
Workshop on Logical Aspects of Cryptographics 2001 Preliminary Version

Models for an Adversary-Centric Protocol
Logic

Peter Selinger

Department of Mathematics and Statistics

University of Ottawa

Ottawa, Canada

Abstract

In this paper, we propose an adversary-centric, logical framework for formalizing
cryptographic protocols. The formalism is inspired by the work of Compton and
Dexter and of Cervesato et al., but we do not focus on proof search, but instead
on logical validity. A novel contribution of this paper is a technique for giving very
short proofs of protocol correctness through models of first-order logic.

1 Introduction

Logic-based approaches to the analysis of cryptographic protocols can be
roughly divided into protocol-centric and adversary-centric approaches. In the
protocol-centric approaches, one devises a formal system such that a derivation
of a certain formula in the system corresponds to a proof of correctness of the
protocol. Conversely, the absence of a derivation indicates the potential for an
attack. In particular, if a model can be given which falsifies the target formula,
then such a model corresponds to a potential attack. This observation (in
principle) provides the basis for the application of traditional model-checking
techniques to cryptographic protocol analysis. Protocol-centric approaches
include the original BAN logic by Burrows et al. [1], as well as many systems
directly or indirectly derived from it.

In the adversary-centric approaches, the situation is reversed. Here, a log-
ical system is given such that derivations correspond to possible attacks on a
protocol. The correctness of a protocol is thus witnessed by the absence of a
derivation of a certain formula. Such approaches have been mostly developed
in connection with proof search; the idea is to use standard proof search tech-
niques to search for attacks on protocols. This is the approach followed by
Compton and Dexter [3] and, in different form, by Cervesato et al. [2].

1 This research was done while the author was at Stanford University.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Selinger

The purpose of the present paper is to take adversary-centric protocol
logics out of the context of proof search, and to view them in a more general
logical context. This allows us to move beyond the world of Horn formulas
common in logic programming, and we obtain an elegant encoding of protocols
as certain first-order formulas. Based on this encoding, we explore the idea of
using models to demonstrate the correctness of a protocol. Note that in this
framework, a single countermodel suffices to prove the absence of an attack,
and thus the correctness of a protocol. This contrasts with the usual model
checking techniques, where each model corresponds to a particular run of the
protocol, and thus an exploration of all possible models is needed in order to
prove correctness.

All logic-based approaches to protocol analysis, whether they are protocol-
centric or adversary-centric, make certain assumptions about the properties
of the cryptographic primitives from which the protocols are built, and about
the types of attacks that are possible. Here, we assume a standard Dolev-Yao
“black-box” model of cryptography, whereby messages are modeled as terms,
and cryptographic operations are modeled in an idealized, “perfect” way [4].
We assume the presence of an intruder who may actively participate in the
protocol by reading, altering and/or blocking any messages on the network,
inserting new messages into the network, and remembering and analyzing
any data seen. In particular, the intruder may apply a known encryption
or decryption key to a known message, decompose messages into parts and
re-compose them, and generate fresh data as needed.

2 Logical encoding of protocols

2.1 Cryptographic primitives and the “black-box” model

Following Dolev and Yao, we model messages as terms that are built from
variables and some or all of the following operations. The language may vary
slightly depending on the protocol modeled.

m, k ::= x [m]k {m}k k− (m1, . . . , mn) 〈m〉k F (m)

Ā KA KA,B sA,B.

Here A,B,C range over a sort of principals, while m, k etc. range over
data, which includes keys, messages, identifiers, etc. We do not introduce
separate sorts for particular kinds of data such as keys; thus, any piece of
data could be potentially used as an encryption key, or in any other way. The
intended interpretation of these terms is as follows: [m]k is the symmetric key
encryption ofm with key k. {m}k is the public key encryption ofm with key k.
k− is the private key corresponding to public key k. (m1, . . . , mn) is a tuple of
messages. Tuples should always be uniquely decomposable; in particular, we

2



Selinger

make no assumption that the tupling operation is associative. We also write
[m,m′]k as a shortcut for [(m,m′)]k, etc. 〈m〉k is a keyed hash of m under key
k. F (m) is a “handshake” function applied to m. A handshake function is
a trivially reversible operation, as used in some protocols; for instance, it is
often taken to be m + 1. Ā is the name of principal A. The last three term
constructors are highly protocol-specific. KA stands for A’s long-term public
key, in protocols that assume that such keys are available. Similarly, KA,B

stands for a long-term shared key between A and B, while sA,B stands for any
other long-term secret shared between A and B.

Depending on the protocol, there may also be one or more constant symbols
denoting certain principals; for instance, the constant S is often used to denote
a principal who acts as a server. In addition, we always have a constant symbol
I to denote the intruder, who is also a principal.

The properties of the various term constructors are axiomatized in Table 1.
These axioms are expressed in two-sorted first-order logic, where we have omit-
ted outermost universal quantifiers for brevity. An important feature of these
axioms is that they do not involve equations, but rather, they are expressed
in terms of a single, unary predicate symbol K. This predicate symbol is
intended to capture what the intruder can know. Thus we read Km as “m
is knowable” by the intruder. Note that, unlike in “logics of knowledge”, K
is a predicate, not a modality; it is applied to terms, not to formulas. There
is also one predicate symbol on principals: H A is intended to mean “A is
honest.” The honesty predicate is primarily used in the formulation of cor-
rectness properties (such as, “the intruder cannot learn any honest principals’
secret”).

Having stated the properties of the cryptographic primitives, we can now
be more precise what we mean by “black-box” cryptography.

Assumption (Black-box assumption). The axioms in Table 1 are the only

way in which a passive intruder can infer new knowledge from known data.

Obviously, this is a rather strong assumption to make in practice, since
in real-world cryptography, it is often possible to infer partial or statistical
information about the content of a message, without necessarily understanding
the entire message. However, the black-box assumption is essential to our
model, and in fact to most other logic-based models of cryptographic protocols.

In addition to the general-purpose axioms shown in Table 1, there will also
be protocol-specific axioms. The intuition is that the general-purpose axioms
capture all the ways in which a passive intruder can infer knowledge, namely
by looking at data and analyzing it. The protocol-specific axioms, discussed
in the next section, capture the additional ways in which an active intruder
can infer knowledge by interacting with a particular protocol.

3



Selinger

K k → (Km ↔ K[m]k) symmetric key

K k ∧Km → K{m}k public key encryption

K{m}k ∧K k− → Km public key decryption

K(m1, . . . , mn) ↔ (Km1 ∧ . . . ∧Kmn) tuples

Km ∧K k → K〈m〉k hash

Km ↔ K F (m) handshake

K k− → K k key generation

K Ā all identities are known

KKA all public keys are known

KK−

I intruder has a private key

KKA,I ∧KKI,A intruder shares a key with each A

K sA,I ∧K sI,A intruder shares a secret with each A

∃A.H A there exists an honest principal

¬H I the intruder is not honest

Table 1
Properties of the cryptographic primitives

2.2 Protocol-specific axioms

The encoding of specific protocols is best illustrated in an example. Consider
the following public key version of the Needham-Schroeder protocol. The
Needham-Schroeder protocol is an authentication protocol which is written in
traditional notation as follows:

(1) A → B : {Ā, Na}KB

(2) B → A : {Na,Mb}KA

(3) A → B : {Mb}KB

Here A,B are two principals whose goal it is to establish their mutual
identity while trading a pair of secret nonces Na and Mb. (Nonces are unique
identifiers generated on the fly and never assumed to be used more than once).
Each principal A has a given long-term public keyKA. Na is a nonce generated
by A, and Mb is a nonce generated by B.

The informal requirement of this protocol is that at the end of their session,

4



Selinger

each of A and B should be convinced of the other’s authenticity, and moreover,
that Na and Mb are shared secrets between A and B. (Here “shared secret”
means that the information should not be known to anybody besides A and
B unless it was intentionally disclosed by one of them).

Authentication properties are difficult to formalize directly, since they in-
volve reasoning about principals’ beliefs. We avoid this issue by using a stan-
dard trick for reducing an authentication property to a secrecy property. To
this end, we assume that any two principals A and B share some a priori
secret sA,B, and we add two more steps to the protocol:

(4) A → B : [sA,B]Na
, [sA,B]Mb

(5) B → A : [sA,B]Na
, [sA,B]Mb

The additional steps (4) and (5) can be thought of as modeling a “payload”
communication which follows the initial authentication (1)-(3). The idea here
is that after A and B are convinced of each other’s identity, they “act” on their
belief by revealing a secret to each other. The requirement of the Needham-
Schroeder protocol can now be expressed (still informally) in terms of a secrecy
property: the intruder should not be able to learn sA,B, for any honest prin-
cipals A,B. The same trick for expressing an authentication property as a
secrecy property was used in [3].

Although it is not clear from the above notation, we intend that steps
(4) and (5) do not causally depend on each other; in particular, B will send
message (5) immediately upon completion of step (3).

To formalize this protocol in our first-order logic, we must translate it
into axioms that describe all the possible ways in which an intruder may gain
knowledge by interacting with this protocol. While it seems, at first glance,
that some information about the protocol might be lost during this translation,
in fact the opposite is the case: as we will see, our formalism describes the
protocol in rather more detail than the above “traditional” notation.

Each protocol has a set of “roles” that can be filled by principals. For in-
stance, the above public key Needham-Schroeder protocol has two roles: the
“initiator” (A) and the “responder” (B). Each role specifies how a princi-
pal reacts to incoming messages, and thus gives rise to a potential source of
information for the intruder. Thus, for each role in the protocol, we obtain
one axiom describing how the intruder can gain knowledge by interacting with
that role. Here are the axioms for the public key Needham-Schroeder protocol:

Φi : ∀A,B ∃n (K{Ā, n}KB
∧ ∀m (K{n,m}KA

→ (K{m}KB
∧ (K[sA,B]n ∧K[sA,B]m))))

Φr : ∀A,B ∀n (K{Ā, n}KB
→∃m (K{n,m}KA

∧ (K{m}KB
→ (K[sA,B]n ∧K[sA,B]m))))

The axiom Φi corresponds to the initiator role, and Φr corresponds to the
responder role.

5



Selinger

2.3 Discussion of the axioms

The first thing one might notice about the axioms Φi and Φr is the usage of
existential quantifiers to model the creation of nonces; this follows the same
ideas as in [2]. For instance, we can interpret Φr as follows: if the intruder
knows any message of the form {Ā, n}KB

, then he can learn a message of the
form {n,m}KA

, for some m. Namely, he achieves this by sending the message
{Ā, n}KB

to B, who will then respond in the way prescribed by step (2) of the
protocol. Moreover, if the intruder then knows {m}KB

, for the same m that
was used in the previous step, then he can learn [sA,B]n and [sA,B]m.

This demonstrates how, by using nested formulas with quantifiers, we can
model the fact that principals have a memory: the responder will check that
the m received in step (3) was actually the same as the m she previously
generated.

Now consider Φi. The encoding works much the same way as that of Φr,
but notice that Φi has an existential quantifier at the top level. This means, an
intruder can learn {Ā, n}KB

, for some n, without any prior knowledge. Thus,
we have modeled the fact that any principal A might spontaneously assume
the role of initiator and attempt to communicate with any B. In effect, we
have given the intruder the power to “coax” A into initiating communication
with B.

Another thing one might notice about the formulas Φi and Φr is their
near-perfect symmetry. Existential quantifiers line up with universals, and
conjunctions with implications. This is not a coincidence; it reflects the fact
that an intended run of the protocol produces the intended result. Indeed,
the reader may easily verify that the two formulas Φi and Φr logically im-
ply ∃k.K[sA,B]k. The proof corresponds precisely to an intended run of the
protocol, which results in messages of the form [sA,B]k being sent.

Another interesting property of Φi and Φr is that we can verify that prin-
cipals actually have the knowledge required to run this protocol. While this
is a liveness property and not a security property, it is certainly important
that a protocol should not be “over-specified” by relying on the principals to
use information that they do not have access to. The reader may verify that
in the presence of the axioms from Table 1, Φi(A,B) is logically derivable
from KK−

A and K sA,B, while Φr(A,B) is logically derivable from KK−

B and
K sA,B. Thus, any principal with knowledge of a private key can participate
in this protocol.

2.4 Attacks as proofs

Having given the axioms by which an intruder may infer knowledge from
interacting with a protocol, we can now state the intended correctness property
of the protocol formally. Recall that the informal requirement was that the
intruder should not be able to learn the secret sA,B for any honest principals
A and B. Let Ξ be the set of axioms from Table 1. Let Ψ be the following

6



Selinger

formula, which expresses a violation of secrecy:

Ψ : ∃A,B.H A ∧H B ∧K sA,B.

Then the formal correctness requirement is

Ξ,Φi,Φr 6⊢ Ψ,

i.e., Ψ is not derivable from Ξ, Φi, and Φr.

It is well-known that the public key Needham-Schroeder protocol does not
satisfy this requirement. Indeed, the intruder can learn sA,B for all A and B.
The attack, due to Lowe [5], assumes that the intruder I can pose as an honest
principal with its own public key KI , and that A initiates communication with
I. In addition, of course, the intruder can pose as another principal.

In our framework, Lowe’s attack translates into a proof of Ψ as follows.
Let A and B be some honest principals. From Φi(A, I), it follows that there
exists some n such that K{Ā, n}KI

and

∀m (K{n,m}KA
→ (K{m}KI

∧ (K[sA,I ]n ∧K[sA,I ]m))). (1)

FromKK−

I , we get K(Ā, n), thus alsoK n. FromKKB, we getK{Ā, n}KB
.

From Φr(A,B), it follows that there exists some m such that K{n,m}KA
and

K{m}KB
→ (K[sA,B]n ∧K[sA,B]m). (2)

From (1), we get K{m}KI
, from which we conclude Km and K{m}KB

by
using KK−

I and KKB as before. Finally, from (2), we get K[sA,B]n and
K[sA,B]m. Then K n and Km imply K sA,B, as desired.

For reference, here is Lowe’s attack in traditional notation:

(1′) A → I : {Ā, Na}KI

(1′′) IA → B : {Ā, Na}KB

(2′′) B → IA : {Na,Mb}KA

(2′) I → A : {Na,Mb}KA

(3′) A → I : {Mb}KI

(3′′) IA → B : {Mb}KB

(5′′) B → IA : [sA,B]Na
, [sA,B]Mb

Here IA is the standard notation for “I pretending to be A”. Note that our
derivation of Ψ from Φi, Φr, and the other axioms indeed corresponds very
closely to the way the intruder gains knowledge in Lowe’s attack. In fact, the
derivation gives rather more detail about how the attack is carried out.

7



Selinger

2.5 Correctness via a model

As Lowe also pointed out, the public-key Needham-Schroeder protocol can
easily be fixed by including B’s name in the second message. We can formalize
the fixed protocol as follows:

Φ′

i : ∀A,B ∃n (K{Ā, n}KB
∧ ∀m (K{n,m, B̄}KA

→ (K{m}KB
∧ (K[sA,B]n ∧K[sA,B]m))))

Φ′

r : ∀A,B ∀n (K{Ā, n}KB
→∃m (K{n,m, B̄}KA

∧ (K{m}KB
→ (K[sA,B]n ∧K[sA,B]m))))

To prove the correctness of the fixed protocol, we must prove that the
formula Ψ is not derivable from Ξ, Φ′

i, and Φ′

r. Since this protocol does not
use a shared private key, hash functions, or handshake functions, we may omit
those features from the signature of the language for the purpose of the present
discussion.

To prove that Ψ cannot be derived from the axioms, it suffices to give a
first-order model which validates the axioms, but not Ψ. One such model is
shown in Table 2. Note that this is a model in the standard sense of models of
first-order logic. The two sorts of principals and data are interpreted by sets P
and D, respectively. The unary predicates H andK are interpreted as subsets
of P and D, respectively, and the unary and binary operations are interpreted
as shown. The ternary tripling operation (a, b, c) is defined in terms of the
pairing operation as ((a, b), c).

It is easy, though tedious, to verify that the resulting model indeed vali-
dates all the given axioms, including Φ′

i and Φ′

r. On the other hand, it does
not validate Ψ. Thus, the model proves the correctness of the corrected pub-
lic key Needham-Schroeder protocol, with respect to our assumptions about
black-box cryptography.

2.6 Discussion of the model

It seems counterintuitive at first that a single model, let alone such a trivial
one with five elements, is supposed to prove the correctness of a protocol.
To help the intuition, imagine a universe of all possible data. Imagine that
this universe was partitioned into two sets: the top-secret data, and the data
which is publicly known. Each of these sets might be further partitioned:
for instance the top-secret data might be further divided into data whose
encryption under k is known or not known, for a certain key k. Proceeding in
this way, we divide the set of all possible data into equivalence classes. Proving
the correctness of a certain protocol might now be likened to defining a line
between known and unknown information, and proving that the protocol does
not, in an appropriate sense, cross the line. The above model, then, provides a
particular way of partitioning the universe into five equivalence classes which
accomplishes this goal. Another way to say this is that the model corresponds
to an invariant of the protocol, rather than to a run of the protocol.

Another aspect of this model which seems counterintuitive is that it only

8



Selinger

Principals: P = {I, A}

Data: D = {W,K,U,N, S}

Predicates: H = {A}

K = {W,K}

Operations: Ī = W, Ā = K

KI = W, KA = K

W− = W, K− = U, U− = U, N− = U, S− = U

sI,I = K, sA,I = K, sI,A = K, sA,A = U

(a, b, c) = ((a, b), c)

k W K U N S

{W}k K K U U U

{K}k K K U U U

{U}k U K U U U

{N}k U U U U U

{S}k U U U U U

k W K U N S

[W ]k K K K K K

[K]k K K K K K

[U ]k U U K K K

[N ]k U U K K K

[S]k U U K K K

n W K U N S

(W,n) K K N S S

(K, n) K K U S S

(U, n) N N S N N

(N, n) U N U U U

(S, n) N U U U U

Table 2
A model for the corrected public key Needham-Schroeder protocol

uses a single honest principal. One is tempted to ask “but couldn’t there
still be a flaw in the protocol when there are two or more honest principals?”
Clearly, one could for instance add the existence of at least two honest prin-
cipals as an additional axiom, and ask whether the intruder could use this
additional fact to gain new knowledge. Fortunately this is not the case. Since
the protocol, and thus the logic, does not include an equality predicate for
principals or for data, we may enlarge the model by creating as many copies
of A (and of Ā) as we wish, without affecting the validity of formulas in the
model. Thus, the protocol is proved secure irrespective of the number of
principals involved.

The construction of models such as the one in Table 2 is not a straight-
forward task. This particular model was constructed by hand and checked by
machine. Particularly the definition of the pairing function is quite subtle,

9



Selinger

since it must be chosen so as to validate Φ′

i and Φ′

r, without also validat-
ing the original Φi and Φr. In principle, the search for such models could
be automated; however, probably some good heuristics are needed to do this
successfully. Brute-force methods are likely to fail because of the size of the
search space. For instance, even in a 5-element model, there are more than 258

possible binary operations. On the other hand, once a model is constructed,
checking its validity is trivial.

3 Using alternate logics

3.1 Classical vs. intuitionistic logic

In the above examples, we have tacitly assumed that we are working in classical
first-order logic, and not, for instance, intuitionistic logic. This seems like a
conservative assumption, since proofs correspond to potential attacks, and
classical logic proves strictly more formulas than intuitionistic logic.

However, it turns out that, for the purpose of protocol descriptions of
the kind we have in mind, it does not actually matter whether one works in
classical or intuitionistic logic. As we will prove in this section, classical logic
and intuitionistic logic coincide when restricted to the kinds of formulas that
arise from the formalization of many protocols. To make this precise, consider
the following three classes of first-order formulas. Here, by convention, the
logical constants (“true” and “false”) are counted as atomic formulas.

Type 0 formulas α ::= atomic formulas α ∧ α α ∨ α ∃x.α

Type 1 formulas β ::= α β ∧ β β ∨ β ∃x.β ∀x.β α → β

Type 2 formulas γ ::= α γ ∧ γ ∀x.γ β → γ

Theorem 3.1 Any Type 2 formula is provable in classical logic if and only if

it is provable in intuitionistic logic.

Proof. The right-to-left implication is trivial. The other implication is easiest
seen in terms of Kripke models. In a given Kripke model, we write s ⊢ φ if
the formula φ is satisfied at world s in the usual Kripke sense. We write
s ⊢loc φ if φ is satisfied at world s locally, i.e., when the world s (with its local
assignment of truth values to atomic formulas) is considered as a classical
first-order model. The following properties are straightforward to prove by
induction on formulas.

(i) For any Type 0 formula α, and any s, s ⊢ α ⇐⇒ s ⊢loc α.

(ii) For any Type 1 formula β, and any s, s ⊢ β ⇒ s ⊢loc β.

(iii) For any Type 2 formula γ, and any s, (∀t ≥ s.t ⊢loc γ) ⇒ s ⊢ γ.

Now suppose γ is a Type 2 formula provable in classical logic. Then by 3., γ
is satisfied at any world s in any Kripke model. By completeness of Kripke

10



Selinger

models, it follows that γ is intuitionistically provable. ✷

Note that all axioms in Table 1 are of Type 1, as are the protocol-specific
axioms. The formula Ψ is of Type 0. Thus, the implication “Ξ∧Φi∧Φr → Ψ”
is of Type 2, and the Theorem applies to it.

Remark 3.2 Any Type 2 formula γ is (intuitionistically as well as classically)
equivalent to a conjunction of formulas of the form ∀x (β1, . . . , βn → α). Thus
the statement of the Theorem is equivalent to saying: for a set of Type 1
axioms, the intuitionistic Type 0 consequences coincide with the classical Type
0 consequences.

3.2 Linear Logic

When modeling certain protocols, it might sometimes be desirable to have
more control over the use of logical resources than classical or intuitionistic
logic provide. The use of linear logic in this context was suggested by [2]
and [3]. We give a brief, and admittedly contrived, example which illustrates
where classical logic might fall short.

Consider a server S which shares a private key KA,S with some honest
principal A. S also keeps some secret s, which it will reveal publicly at A’s
request. Before revealing s, S will attempt to ensure that the request really
came from A, by following this protocol:

(1) A → S : Na

(2) S → A : [Na, Ns]KA,S

(3) A → S : [x,Ns]KA,S

(4) S → A : [x+ 1, Ns]KA,S

(5) A → S : [Na + 2, Ns]KA,S

(6) S : s

That is, A sends a nonce Na, to which S responds with a challenge
[Na, Ns]KA,S

. Note that only A can decrypt this message. Steps (3) and
(4) have no practical use for this protocol, except to illustrate a point. In step
(3), A is given the opportunity to send any message of the form [x,Ns]KA,S

to S, and S will respond with [x + 1, Ns]KA,S
. Finally, in step (5), A proves

her identity by replying to the challenge from step (2), and then S reveals the
secret.

It is clear that if the intruder can trick S into going through steps (3) and
(4) of the protocol twice, for the same nonce Ns, then he could easily fool S
into revealing the secret. On the other hand, if S carefully keeps track of which
step of the protocol have already been performed, and does not allow steps to
be repeated within a single session, then this particular attack is spoiled.

11



Selinger

The encoding into classical logic does not allow us to draw this particular
distinction on the behavior of S. The above protocol is formalized as follows:

Φs : ∀n (K n → ∃m (K[n,m]KA,S
∧ ∀x (K[x,m]KA,S

→

(K[F (x),m]KA,S
∧ (K[F (F (n)),m]KA,S

→ K s))))).

However, in classical logic, we cannot state that the intruder should not use
the subformula ∀x (. . .) more than once. Thus we cannot model the situation
where S disallows repeating steps of the protocol.

One the other hand, linear logic is able to express this distinction. If we
write the formula Φs in linear logic, using linear implication and multiplicative
conjunction, we can explicitly insert the modality “!” in places where we want
to allow replication of subformulas. The following formula may serve to embed
the above protocol in affine linear logic:

Φ′

s : ! ∀n (K n−◦ ∃m (!K[n,m]KA,S
⊗ ∀x (K[x,m]KA,S

−◦

(!K[F (x),m]KA,S
⊗ (K[F (F (n)),m]KA,S

−◦ !K s))))).

Note that we have inserted “!” in front of the entire axiom, since there might be
any number of sessions of a protocol, and in front of positive atomic formulas
Km, since knowledge is permanent even in a linear world. This particular
encoding reflects the situation where steps (3) and (4) of the protocol may
not be repeated. The other situation, where they may be repeated, can be
encoded by inserting an “!” just before ∀x.

It should be noted that for the purpose of proving simple correctness prop-
erties, such as the secrecy properties considered in this paper, using classical
logic is adequate in most cases. Since classical logic is a superset of both intu-
itionistic and linear logic, its use does not lead to false proofs of correctness; in
the worst case, it might fail to establish the correctness of some good protocol.

On the other hand, linear logic has the potential to express correctness
requirements beyond the ones considered here. For instance, through the use
of “additive” connectives, one can formalize the idea that the intruder may
take one action or another, but not both. An application of these ideas to
contract signing protocols appears in current work by Chadha and Scedrov.

4 Relationship to other models

In this section, we sketch the relationship of our formalism with similar for-
malisms that were developed by Compton and Dexter [3] and by Cervesato
et al. [2]. Both these earlier works are primarily concerned with proof search,
and thus use Horn or Horn-like clauses to encode protocol axioms.

4.1 Relationship to Compton and Dexter

Compton and Dexter’s framework is based on Horn clauses [3]. The difference
between their system and ours lies in a different nesting of quantifiers. To

12



Selinger

convert a formula from our formalism to Compton and Dexter’s, one first
pulls all existential quantifiers to the top level, past any universal quantifiers
(this is not a logically equivalent transformation). For instance, the formula
Φr from Section 2.2 is converted to

∃m ∀A,B ∀n (K{Ā, n}KB
→ (K{n,m}KA

∧(K{m}KB
→ (K[sA,B]n∧K[sA,B]m)))).

The existentially quantified variable m is then turned into a constant M by
skolemization, and the resulting formula is converted into three equivalent
Horn clauses:

∀A,B ∀n K{Ā, n}KB
→ K{n,M}KA

∀A,B ∀n K{Ā, n}KB
∧K{M}KB

→ K[sA,B]n

∀A,B ∀n K{Ā, n}KB
∧K{M}KB

→ K[sA,B]M .

Finally, the proof search algorithm, which is not very well documented in
logical terms, subtly makes use of the fact that M is “session-dependent”,
and thus may actually depend on A, B, and n. Our analysis suggests that one
could achieve the same effect, in a more semantically transparent fashion, by
skolemizing the existential quantifier without first pulling it to the top level,
and thus replacing m by a function symbol M(A,B, n).

4.2 Relationship to Cervesato et al.

Cervesato et al. give an encoding of protocols in linear logic, using Horn-like
formulas (essentially multiple-conclusioned Horn clauses where the right-hand-
side may be existentially quantified) [2]. The key step for translating our
notation to that of Cervesato et al. is to give explicit names to subformulas.
For instance, consider again the formula Φr from above. By giving names
such as B0(), B1(A,B, n,m), etc., to some of its subformulas, we can write
Φr = B0, where

B0() = ∀A,B ∀n(K{Ā, n}KB
→ ∃m (K{n,m}KA

∧B1(A,B, n,m)))

B1(A,B, n,m) = K{m}KB
→ B2(A,B, n,m)

B2(A,B, n,m) = K[sA,B]n ∧K[sA,B]m.

Directing these equalities as left-to-right implications, and then pulling
universal quantifiers to the top-level (where we omit them), we obtain the
following rewrite rules in the style of Cervesato et al.:

B0(),K{Ā, n}KB
→ ∃m. K{n,m}KA

,B1(A,B, n,m)

B1(A,B, n,m),K{m}KB
→ B2(A,B, n,m)

B2(A,B, n,m) → K[sA,B]n,K[sA,B]m.

13



Selinger

This transformation captures the basic idea of Cervesato et al.’s encoding.
However, their actual encoding still differs in many details which we do not
consider here. For instance, they omit the variables A,B, replace constants
such as KA,S by declarations made in an “initialization phase”, and they split
the predicate K into several predicates N,D,M,C, for network, decomposi-
tion, memory, and composition, respectively. However, it appears that these
details were created primarily in order to facilitate efficient proof search, and
they are probably of lesser significance from a logical point of view.

5 Conclusions and future work

We have presented a simple, adversary-centric framework for modeling cryp-
tographic protocols in first-order logic. We have demonstrated the feasibility
of the approach by applying it to one of the simplest known protocols with
an interesting flaw, the public-key Needham Schroeder protocol. The author
admits that this particular protocol has already been over-analyzed in the lit-
erature; however, it still serves as a useful illustration of the concepts discussed
in this paper.

One new contribution of this paper is the use of first-order models to
prove the correctness of protocols. The apparent simplicity of this method,
and particularly the fact that there is a single “witness” for the correctness
of the protocol, is in contrast to some other methods that have been used
to establish similar results, including proof search and model checking tech-
niques. However, the simplicity of the specific countermodel used also causes
an uneasy feeling. It highlights the strong assumptions that were used in
the formalization of the correctness property of the protocol, particularly the
black-box assumption.

The adversary-centric framework seems particularly suited for formalizing
secrecy properties. Authentication properties can also be modeled, at least to
the extent that they can be reduced to secrecy properties. It is an interest-
ing question whether the approach can be extended to other correctness re-
quirements for protocols, such as agreement requirements used in e-commerce
protocols, non-repudiation requirements, etc.

Another interesting question is whether one can formalize more sophisti-
cated protocol features, such as time stamps, and protocol requirements, such
as robustness under the disclosure of session-specific data. Our framework can
be modified to include a sort of “session identifiers”, and a predicate which
declares certain sessions to be “corrupted”. The axioms can be modified so
that corrupted session keys are immediately disclosed. A useful security prop-
erty, which can be formulated in this framework, is that the intruder should
not be able to learn secrets that are associated with a non-corrupted session,
even if other sessions of the same protocol have been corrupted.

14



Selinger

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM

Transactions on Computer Systems, 8(1):18–36, 1990.

[2] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In R. Gorrieri, editor, Proceedings of the 12th

IEEE Computer Security Foundations Workshop, CSFW ’99. IEEE Computer
Society Press, 1999.

[3] K. J. Compton and S. Dexter. Proof techniques for cryptographic protocols. In
Proceedings of ICALP ’99, pages 25–39, 1999.

[4] D. Dolev and A. Yao. On the security of public-key protocols. IEEE

Transactions on Information Theory, 2(29), 1983.

[5] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
CSP and FDR. In 2nd International Workshop on Tools and Algorithms for the

Construction and Analysis of Systems. Springer Verlag, 1996.

15


