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Quantum circuits of T -depth one

Peter Selinger

Department of Mathematics and Statistics, Dalhousie University

We give a Clifford+T representation of the Toffoli gate of T -depth 1, using four ancillas. More generally,
we describe a class of circuits whose T -depth can be reduced to 1 by using sufficiently many ancillas. We
show that the cost of adding an additional control to any controlled gate is at most 8 additional T -gates,
and T -depth 2. We also show that the circuit THT does not possess a T -depth 1 representation with an
arbitrary number of ancillas initialized to |0〉.

1 Introduction

It is known that the gates of the Clifford group, together
with the single-qubit non-Clifford gate

T =

(

1 0
0 eiπ/4

)

,

form a good universal gate set for fault-tolerant quantum
computation [1]. The decomposition of arbitrary gates
into this Clifford+T set, either exactly or to within some
given accuracy ǫ, is an important problem [2]. It is often
desirable to find decompositions that are optimal with
respect to a given cost function. The exact cost function
used is application dependent; some possibilities are: the
total number of gates; the total number of T -gates; the
circuit depth; and/or the number of ancillas used.
Amy et al. [3] recently proposed T -depth as a cost

function. The idea is to count the number of T -stages in
a circuit, rather than the number of T -gates. A T -stage
is a group of one or more T - and/or T †-gates on distinct
qubits that can be performed simultaneously. Note that,
for the purpose of computing T -count or T -depth, the
gates T and T † can be treated interchangeably, due to
the identity T † = TS†.
To illustrate the concept of T -depth, consider the

standard decomposition of the Toffoli gate into the
Clifford+T set, as given in [4]:

=

H T
† T T

† T

T
†

H

T
† S

T

(1)

This decomposition has T -count 7, and in the exact form
written, it has T -depth 6, because the fourth and fifth T -
gates form a single T -stage. Using trivial commutations,
the circuit (1) can easily be reduced to T -depth 4:

=

H T
† T T

†

T
†

T H

T
† S

T

(2)

Amy et al. [3] further improved the T -depth of the Toffoli
gate to 3, using the following circuit. They conjecture

that for circuits without ancillas, this T -depth is optimal.

=

H T

T

T
†

T
†

T

T
†

T
† S

H

(3)

The purpose of this note is to show that, with the
use of ancillas, the T -depth of the Toffoli gate, and of
many (but not all) other circuits, can be reduced to 1.
This may be useful in quantum computing architectures
where T -gates are expensive and ancillas are cheap.

2 A T -depth one representation

of the Toffoli gate

Recall that the Clifford group for any number of qubits
is generated by the Hadamard gate H , the phase gate
S = T 2, the controlled not-gate, and unit scalars. As
usual, we write X , Y , and Z for the Pauli operators.

H =
1√
2

(

1 1
1 −1

)

, S =
(

1 0
0 i

)

,

X =
(

0 1
1 0

)

, Y =
(

0 −i
i 0

)

, Z =
(

1 0
0 −1

)

The Toffoli gate is a doubly-controlled not-gate. It
is equivalent to a doubly-controlled Z-gate via a basis
change:

=
H Z H .

(4)

Now consider a computational basis state |xyz〉, where
x, y, z ∈ {0, 1}. The effect of the doubly-controlled Z-
gate is to map |xyz〉 to (−1)xyz|xyz〉. Let us write “⊕”
for modulo-2 addition in {0, 1}, and “+” and “−” for
the usual addition and subtraction of integers. We then
have the following inclusion-exclusion style formula for
x, y, z ∈ {0, 1}:

4xyz = x+y+z−(x⊕y)−(y⊕z)−(x⊕z)+(x⊕y⊕z). (5)

This is easy to prove by case distinction, or algebraically
using x⊕ y = x+ y− 2xy. Now let ω = (−1)1/4 = eiπ/4.
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Z

=

|x〉
|y〉
|z〉

|0〉
|0〉
|0〉
|0〉

|x〉

|y〉

|z〉

|x⊕ y ⊕ z〉

|x⊕ y〉

|y ⊕ z〉

|x⊕ z〉

T

T

T

T

T
†

T
†

T
†

|x〉
|y〉
|z〉

|0〉.
|0〉
|0〉
|0〉

Figure 1: T -depth 1 representation of the Toffoli gate

From (5), we have

(−1)xyz = ω4xyz

= ωx ωy ωz (ω†)x⊕y (ω†)y⊕z (ω†)x⊕z ωx⊕y⊕z.
(6)

Note that T |x〉 = ωx|x〉, and therefore, the doubly-
controlled Z-gate can be implemented by applying T -
gates to qubits in states |x〉, |y〉, |z〉, and |x⊕y⊕z〉, and
T †-gates to qubits in states |x⊕ y〉, |y⊕ z〉, and |x⊕ z〉.
This can be done in any order, or even in parallel, us-
ing four ancillas, as shown in Figure 1. Combining this
with (4), we obtain a representation of the Toffoli gate
of T -depth 1 and overall depth 7.

Remark 2.1. It is interesting to note that the decom-
positions of Nielsen and Chuang (1) and Amy et al. (3)
follow precisely the same pattern, i.e., they can both be
seen to be direct implementations of (6). The only dif-
ference is that in each of the circuits, one of the T -gates
has been needlessly decomposed into T † and S.

3 An application to multiply-con-

trolled gates

Consider a doubly-controlled (−iZ)-gate:

−iZ

=
|x〉
|y〉
|z〉 Z

S
†

.

(7)

The doubly-controlled Z-gate is a diagonal gate whose
effect is given by (6). The controlled S†-gate is
a diagonal gate whose effect is given by (−i)xy =
(ω†)x (ω†)y ωx⊕y. It follows that the combined effect
of the two gates is

(−1)xyz (−i)xy = ωz (ω†)y⊕z (ω†)x⊕z ωx⊕y⊕z, (8)

which therefore requires a T -count of only 4. Using one
ancilla, this can be achieved with T -depth 1 and overall
depth 5:

−iZ

=

|x〉
|y〉
|z〉

|0〉

|x⊕ z〉

|y ⊕ z〉

|z〉

|x⊕ y ⊕ z〉

T
†

T
†

T

T |0〉.

|x〉
|y〉
|z〉

(9)

Alternatively, one can find an implementation that uses
no ancilla. It uses fewer overall gates, but has T -depth 2
and overall depth 7:

−iZ

=
|x〉
|y〉
|z〉 |z〉

|y ⊕ z〉

|x⊕ y ⊕ z〉
T

T
†

T

|x⊕ z〉
T

† |x〉
|y〉
|z〉.

(10)
We also have

−iX

=
H −iZ H

= S
†

.

(11)

Suppose we have a Clifford+T -representation of some
controlled quantum gate G, and we wish to obtain an ef-
ficient Clifford+T -representation of a doubly-controlled
G-gate. Using (9), (11), and (12), the cost of doing so is
at most 8 additional T -gates, increasing the T -depth by
at most 2, and the overall depth by at most 14, using 2
ancillas:

|x〉
|y〉
|φ〉 G

=

|x〉
|y〉

|φ〉
|0〉 −iX

G

iX |0〉
.

(12)

Note that the cost of the additional control, in terms of
the overall gate count, is 28 (2 times 12 gates from (9)
and 2 times 2 Hadamard gates from (11)). This can be
reduced to 26 by leaving the ancilla in (9) in state |x〉
instead of |0〉; however, doing so requires carrying this
ancilla during the computation of G, which may involve
a tradeoff.

If (10) is used instead of (9), the overall gate count cost
of (12) decreases to 22, and the ancilla use to 1. How-
ever, the depth and T -depth cost increase to 18 and 4,
respectively.

Remark 3.1. The above construction can be iterated to
add n additional controls to a controlled gate at the cost
of T -count 8n and T -depth 2⌊log2 n+ 1⌋. The logarithm
in the expression for T -depth arises because a pair of T -
stages is sufficient to double the number of controls, as
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shown here for n = 3:

G

=

|0〉

|0〉
|0〉

−iX

−iX

−iX

G

iX

iX

iX

|0〉

|0〉

|0〉

.

(13)

For example, this yields an implementation of a triply-
controlled not-gate with T -count 15 and T -depth 3 (7 T -
gates for the Toffoli gate, and 8 T -gates for the additional
control); or a quintuply-controlled not-gate with T -count
31 and T -depth 5. It is not currently known whether any
of these T -counts or depths are optimal.

Remark 3.2. Because the T -gate is diagonal with
T |0〉 = |0〉, it can be regarded as a controlled gate,
namely, a controlled global phase change. Therefore, we
can use the above procedure to implement a controlled
T -gate with T -count 9 as follows:

T
=

|0〉 −iX T iX |0〉.
(14)

Using (9), we obtain T -depth 3, depth 15, and gate
count 29 with two ancillas. As before, by leaving the an-
cilla of (9) in state |x〉 instead of |0〉, the gate count can
be reduced to 27. Alternatively, using (10), we obtain
T -depth 5, depth 19, and gate count 27 with one ancilla.
Except for slightly improved overall gate counts, these
results are the same as those in [3].

4 T -depth one representation of

almost classical circuits

It is straightforward to generalize the construction of
Section 2 to circuits built up from T and almost classical
gates.

Definition 4.1. A unitary operator is classical if it is
given by a permutation of computational basis states,
and diagonal if its matrix representation is diagonal in
the computational basis. Let us call an operator almost
classical if it can be written as a product of a classical
operator and a diagonal operator.

The almost classical operators obviously form a group.
Of the 24 single-qubit Clifford operators (taken modulo
global phase), exactly 8 are almost classical; they form
the subgroup generated by S and X .

Definition 4.2. Let C be a set of gates. We say that a
circuit is C+T -representable if it can be built with gates
from C ∪ {T } and their inverses. We say that such a
circuit has T -depth n (relative to C) if it can be written
using only gates from C and n T -stages.

Theorem 4.1. Let C be any set of almost classical gates,
containing the controlled not-gate. Using ancillas, any
C + T -representable n-qubit circuit can be written of T -
depth 1 (relative to C).

Proof. The proof idea is simple. Each T -gate in the cir-
cuit is a π/4 phase change conditioned on some boolean
combination of the inputs. Intuitively, one may copy
each such boolean condition to an ancilla, execute all
T -gates in parallel, uncompute the ancillas, and finally
re-compute the output.
The formal proof proceeds by induction on circuits.

For each C + T -representable n-qubit circuit A, we will
by induction construct C + T -representable circuits A1

and A2 such that A1 is diagonal and has T -depth at most
1, A2 has T -depth 0, and A = A2 ◦A1.
The base case occurs when A = I is the identity cir-

cuit. In this case, we can let A1 = A2 = I, and there is
nothing to show.
For the induction step, suppose A is of the form A′◦G,

where G is a single gate. By induction hypothesis, there
is a decomposition A′ = A′

2 ◦ A′
1 satisfying the above

conditions.

• Case 1: G is not equal to T or T †. In this case, we
let A1 = G†◦A′

1◦G and A2 = A′
2◦G. Then trivially,

A = A2 ◦ A1, and A1 and A2 have the required T -
depths. Moreover, since G is almost classical, A1 is
diagonal.

• Case 2: G is T , applied to the ith qubit. In this
case, we let

A1 =
. . .

|0〉

i
A

′
1

T

i

|0〉

. . .
(15)

and A2 = A′
2. Since A′

1 is diagonal, so is A1, and
it follows that the ancilla is uncomputed correctly.
Moreover, A1 is equivalent to A′

1 ◦G, and therefore,
A = A2 ◦A1. Finally, since A

′
1 has T -depth at most

1, so does A1.

• Case 3: G is T †, applied to the ith qubit. This is
entirely analogous to case 2.

A similar result appears in Section 6.4 of version 2 of
[3], but with a proof that is quite different.
Note that the gate set C in Theorem 4.1 is not neces-

sarily assumed to consist of Clifford gates. For example,
if on some hypothetical architecture, T -gates are expen-
sive but Toffoli gates are cheap, one can include the Tof-
foli gate in the set C.
In general, the proof of Theorem 4.1 increases the size

of the circuit, but only by a constant factor. In practice,
it is often possible to find a much smaller circuit than
the one constructed in the proof.
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If we take C = {S,X,CNOT} and apply Theorem 4.1
to circuit (1) (excluding the initial and final Hadamard
gate), we obtain another T -depth one representation of
the Toffoli gate.
We also note that there is a trade-off between T -depth

and the number of ancillas. The procedure of the proof
of Theorem 4.1 adds one ancilla for each T -gate. How-
ever, by splitting a circuit with T -count n into two cir-
cuits with T -count ⌈n/2⌉ each, it is clear that one can
approximately half the number of ancillas by doubling
the T -depth, and so forth.

5 Some circuits cannot be writ-

ten with T -depth one

The result of the previous section shows that any two T -
stages can be combined into a single T -stage, provided
that they are only separated by almost classical gates.
One may wonder whether perhaps all Clifford+T circuits
can be written of T -depth one, using a sufficient number
of ancillas initialized to |0〉. We show that this cannot
be done.

Theorem 5.1. The single-qubit operator THT cannot
be implemented as a Clifford+T circuit of T -depth 1,
using an arbitrary number of ancillas initialized to |0〉.
This is true even if the ancillas are not required to be
returned to their initial state at the end of the computa-
tion.

Before proving the theorem, we start with a general
observation about Clifford+T circuits of T -depth 1.

Proposition 5.1. Let U be an n-qubit Clifford+T cir-
cuit of T -depth 1. Let |φ〉 be any single-qubit state, and
consider

|ψ〉 = U(|φ〉 ⊗ |0〉 ⊗ . . .⊗ |0〉).

Consider the {+1,−1}-valued Pauli observable X ap-
plied to the first qubit of ψ; denote its expected value
by E|φ〉. Suppose E|+〉 is non-zero. Then

E|0〉
E|+〉

is a rational number.

Proof. The expected value of the observable X on the
first qubit of |ψ〉 is

E|φ〉 = 〈ψ| (X ⊗ I ⊗ . . .⊗ I) |ψ〉
= 〈φ, 0, . . . , 0| U †(X ⊗ I ⊗ . . .⊗ I)U |φ, 0, . . . , 0〉.

(16)

We analyze the structure of U †(X⊗ I⊗ . . .⊗ I)U . Since
U is of T -depth 1, it can be written as U = U1 ◦U2 ◦U3,
where U1 and U3 are Clifford circuits and U2 = T ⊗

. . .⊗ T ⊗ I ⊗ . . .⊗ I. Since U1 is Clifford, we know that
U †
1 (X ⊗ I ⊗ . . .⊗ I)U1 is a Pauli operator

U †
1 (X ⊗ I ⊗ . . .⊗ I)U1 = ±A1 ⊗ . . .⊗An, (17)

where each Ai ∈ {X,Y, Z, I}. Using the relations

T †IT = I, T †ZT = Z,

T †XT =
1√
2
X − 1√

2
Y, T †Y T =

1√
2
X +

1√
2
Y,

we find that

U †
2 (±A1 ⊗ . . .⊗An)U2

= ±(T †A1T )⊗ . . .⊗ (T †An1
T )⊗An1+1 ⊗ . . .⊗An

= λP1 + λP2 + . . .+ λPm,

(18)

where each Pj is an n-qubit Pauli operator. The key ob-
servation here is that the same factor λ occurs in front
of each (possibly signed) summand, and λ is indepen-
dent of |φ〉. In fact, we have λ = ( 1√

2
)k, where k is the

number of times the operators X and Y occur among
A1, . . . , An1

. Let

Qj = U †
3 Pj U3. (19)

Since U3 is Clifford, this is again some Pauli operator,
say

Qj = (−1)qjBj,1 ⊗ . . .⊗Bj,n. (20)

Combining (17) through (20), we find

U †(X ⊗ I ⊗ . . .⊗ I)U = λQ1 + λQ2 + . . .+ λQm

= λ

m
∑

j=1

(−1)qjBj,1 ⊗ . . .⊗Bj,n.

(21)

Combining this with (16), we get

E|φ〉 = λ

m
∑

j=1

(−1)qj 〈φ|Bj,1|φ〉 〈0|Bj,2|0〉 · · · 〈0|Bj,n|0〉.

(22)
Since each Bj,i ∈ {X,Y, Z, I} is a Pauli operator, it fol-
lows that E|φ〉/λ is rational (indeed, an integer) for |φ〉 ∈
{|0〉, |+〉}. The claim then immediately follows.

Proof of Theorem 5.1. For U = THT , we compute

U †XU =
1

2
X +

1

2
Y +

1√
2
Z,

and therefore

E|0〉 = 〈0| U †XU |0〉 = 1√
2

and

E|+〉 = 〈+| U †XU |+〉 = 1

2
.

Since E|0〉/E|+〉 is irrational, the claim immediately fol-
lows from Proposition 5.1.
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6 Conclusion

We found a class of circuits whose T -depth can be re-
duced to one, by using a sufficient number of ancillas.
We also showed that there are circuits whose T -depth
cannot be reduced to one, regardless of the number of
ancillas used. It remains an open problem how to de-
termine the minimal T -depth or T -count of any given
Clifford+T circuit.
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