Theory and Implementation of a Functional
Programming Language

Ari Lamstein*

October 2000

Abstract

The goal of this research is to design and implement a small functional pro-
gramming language that incorporates some of the features that arise from the the-
oretical study of programming language semantics. We begin with the study of
the A-calculus, an idealized mathematical language. We present the language PPL,
a strongly typed, call-by-name language which supports recursion and polymor-
phism. We describe a compiler of PPL into a low-level assembly language. The
compilation is based on an abstract machine interpretation and includes a type in-
ference algorithm.

1 Introduction

The foundations of functional programming languages lie in the untypealculus,
which was developed by Church in 1932. It was developed with two mathematical
goals in mind [1]:

1. To develop a general theory of functions.

2. To use that theory as a foundation for mathematics.

While the attempts at (2) were not successful, Xhealculus developed as a rich
theory of computation [1]. It is well-known that Turing’s notion of computability is
equivalent to\-definability; that is, the class of computable functions can be encoded
in the A-calculus [4]. As we will see, it is this fact coupled with its simple semantics
that leads us to use thecalculus as a model for functional programming languages.

The principal difference between functional programming languages and their im-
perative counterparts (such as C or Java) is how programs written in them are viewed.
Programs in imperative languages are viewed as a sequence of statements that operate
by altering the content of the memory. Programs in functional languages, however, are
viewed as expressions; their evaluation corresponds to the program’s execution.

*This research was conducted under the supervision of Peter Selinger at the University of Michigan. The
author can be contacted via email at ari@lamstein.com.

An effect of this is the strength of variable bindings. In functional languages such
bindings are permanent, as they are in common mathematical notation. To say “let x
=5;" in a functional language such as ML means that one is forbidden to later assign
another value to that variable. In an imperative language, however, variable bindings
are considered “mutable,” as updating memory is a statement, and not an expression.

In a purely functional language an expression yields the same result each time it
is evaluated. Statements in an imperative language, however, can behave differently
at different times they are executed. This is because the statements can have “side
effects”, such as reading and writing to memory.

Thus, constructs such as for and while loops are seldom used in functional lan-
guages, as thexpressionsn the loop body have the same result each time they are
executed. Such loops are only useful in the presence of side effects, where one can
alter a physical property of the computer, such as the screen or an address of memory.

By minimizing side effects, one uses a higher-level approach when writing algo-
rithms. Rather than concerning oneself with how the computation is carried out, we
instead consider a description of the result being computed. For example, consider
writing the factorial function in ML:

let fac x = if (x=0) then 1 else (x * (fac (x-1)));

Here we just state the definition of the function. Now consider implementing the same
function in an imperative style in C:

int fac (int x) {
int result=1;

while (x>0) {
result = result*x;
X =X - 1;

}

return result;

}

Here we concern ourselves with how the actual computation is carried out: we allocate
memory for a new variable, repeatedly change its value, and then return that final value.
In ML we leave the process of allocating and updating memory to the compiler.

The primary benefit of imperative languages is speed. By directly manipulating
memory and relying less on recursion, programs in imperative languages are often able
to perform the same task in less time. But as computers become faster, this advantage
is meaningful for a smaller number of programs. Also, compiler optimizations for
functional languages sometimes produce code which is comparable to that obtained
from imperative languages.

The primary benefits of functional languages are the clarity and small size of code
needed to write an algorithm. Clarity is achieved by freeing the programmer from
the low-level implementation of computation. One is rarely faced with the arduous

task that is common when reading and writing code which is written in imperative
languages: namely, keeping track of both the value and meaning of several variables.
Functional languages place no more restrictions on functions than on variables.
One can pass functions to other functions, store them in data structures, or return them
as the result of a function. One can even pass functions with an arbitrary number of
their parameters instantiated.
The notion of passing a function with an arbitrary number of its parameters instan-
tiated is related tourried notation As an example, consider the functiplus , which
one normally thinks of as taking a pair and returning a value; i.e. a function with the
signature

plus: (int * int) —int .

However, one can also think of addition as the application of two functions, each of
which takes one argument. This yields the signature

plus: int — (int —int)

Here, for example, the result of providing 3gtus is a function which takes an inte-
gerand adds 3to it. Thuéplus 3)5 = 8 and(plus 10)5 = 15. This transformation

of a function which takes arguments to the application affunctions, each of which
takes one argument, is calledrrying. It is even possible to applylus to just one
argument, and pass the result (which is a function) as an argument to another function.
This property allows one to create very robust libraries. For example, consider the
library functionmapin ML. This function has the type signature

map: (o — () — (alist) — (Blist).

It takes two arguments, a functigifrom « to 3, and a list of elements of type It
returns a list of elements of typg#& which is obtained by applying to each element of
the list. Here we usa andg to represent the fact that the map function is polymorphic,
allowing one to substitute arbitrary types feands.

The above properties make many tasks, such as those involving list manipulation,
relatively easy. As an example, suppose one wanted to increase the value of each
element in a list of integeiigtlist by 3. One could do this by simply writing

let list = Listmap (plus 3) intlist

)

where plus is the curried addition function from above. This example is representative
of how algorithms in functional languages are generally written: by the application of

one or more functions to a data structure. This is a level of modularization which is not
possible without higher order functions.

2 The Untyped \-calculus
2.1 The Language

We now introduce the fundamental definitions of #ealculus. We refer the reader to
[1, 8, 3] for a more comprehensive treatment.

Let V be a countably infinite set of variables (writteny, z,...). The class of
A-terms consists of words constructed from the following alphabet:

e variables:z,y, z ...
e lambda abstractor: A
e parentheses:(,)
e period: .
Definition. The class\ of A-terms is the least class satisfying the following:
1. if z is a variable, then € A,
2. if M, N € A, then(MN) € A,
3. if M € A, then(Az. M) € A.

Terms of the form M N) represent the application of the functid# to the argu-
mentN. Terms of the forn{Az. M) are called\-abstractionsand denote the function
that maps: to M. From the above definition, we can see that the following\aterms.

(z)
(Ay.(zz))
((Ay.(z2)) (A (z2)))

We will drop unnecessary parentheses frasterms by using the following con-
ventions. Application associates to the left, and\édv P stands for((M N)P). We
write Ax1xs ... 2. M for Axy.(Azg ... (Azp,.M) . ..)

Application binds stronger thak-abstraction, and sadxz. M N means\z.(M N)
and not(Az.M)N. Thus, the right-hand side of &abstraction extends as far to the
right as possible.

The operations which we will perform ok-terms depend on the distinction be-
tween free and bound variables. Informally, in the texmM/ the variabler is said to
be bound and the subternd/ is called thescopeof the binding. A variable is called
freeif it is not bound.

Definition. The set of free variables of)&term is defined as follows:

FV(z) =z
FV(Az.M) = FV(M)\{z}
FV(MN) = FV(M)UFV(N)

Note that a variable may appear both free and bound in a term, sudh ésx.x)x.

One can think of bound variables as local variables. The name of a bound variable
is not significant, as bothx.2 and\y.y denote the same function. We will henceforth
identify A-terms which differ only by a renaming of bound variables. Such terms are
calleda-equivalent.

Definition. The termsM, N € A are said to bev-equivalent, writtel\/=, N, if M
and N are equal except possibly for the renaming of bound variables.

Thus, Ax.xyz=, \w.wyz but A\z.zyz #, A\r.xwz asy is not bound in\x.xyz.
Another example is\z.zyz #, Ay.yyz. Here the second term has a bound variable
(the lasty) which occurs free in the first term!

2.2 Substitution

Our primary interest with\-terms will be computation, which we view as the evalua-
tion of expressions. The first notion of evaluation we consider is thatreduction.

The termAz.M is an expression for the function which mapgo the termA/.
Herez may occur inM. In the context of programming languagesis called the
parameterof M. If the function\z.M is applied to the valu&V, then the result ig/,
with all occurrences af replaced byV.

Suppose thaf is the addition operation, written in prefix form, so thfa2 3 eval-
uates tos. Then\z. fzx is the function which maps to « + x, thus the “times two”
function. If we evaluaté\z. fxx)3, we obtainf 3 3, or 6.

We write M [z := N] for the result of replacing the free variableby N in the
term M. This is thesubstitutionof V for z in M, and is formally defined below.

Definition. The result of substitutingv for the free occurrences af in M, written
Mz := NJ, is defined as follows.

1. zjz:=N]=N

2. ylx:=N]=vy, ifasy

3. (A\y.My)[z ;= N] = Ay.(My[z := N]), providedz # y andy ¢ FV(N).
4. (MiMs)[z := N| = (M [z := N])(Mz[z := N])

The reason for the provision in (3) is that if we were to make the following substi-
tution blindly:

Az.zyzly =] = Az.axxz

we would “gain” a bound variable. But this goes against the spirit of substitution, as
the name of a bound variable should not affect the result of the substitution.

We solve this problem by introducing a new step in the substitution process. Be-
cause a name clash arises when we renamag a bound variable, we first rename
as a variable which does not occurim.zyz. This new term isx-equivalent to the
original one. Thus, the above substitution can be carried out as follows:

Az.ayzly = x] =4 Me.kyzly := z] = Mk.kaz

2.3 (-Reduction

We defines-reduction with the idea of substitution and function application in mind.
We call aterm of the forniAz. N') P a3-redexand say that iteducego N[z := P].

We say that a terml/ € A 3-reduces to a term{’ in one step, writtetl — M’, if

M’ is obtained fromM by reducing a single redex that is a subterm\6f Formally,

— g is the smallest relation on terms such that

o M —p M
N —p N’ M —g M’
MN —3 MN' e M —g e M’

Definition. If M € A has no subterms of the for(hz.N) P, thenM is said to be in
B-normal form

Note that a normal form cannot lsereduced any further.

We write —7 for the reflexive transitive closure ef 5. Furthermore, we say that
if M —7% M'"and M’ is in normal form, thenM is the result of s-reducing (or
evaluating)M .

Recall our premise that the-calculus can be viewed as a prototype for functional
programming languages. We now give examplegioéduction which support this
premise.

Example 2.1 (Identity)The termAz.x is the identity function.

Proof. This claim is only true if \z.z) M —j M forall M € A.
Az.x)M —gzjz:=M)=M O

Example 2.2 (Boolean Values, Conditionallhe \-termsiz.(Ay.z) andAz.(Ay.y) cor-
respond to the boolean values true and false, respectivelyB et a boolean value.
Then BM N is the conditional, meaning “if3 is true then evaluaté/, else evaluate
N.ﬂ

Recall thatBM N = (BM)N and means “first evaluate the application®fto
M; apply that result taV”.

Proof. We first show thatA\z.(A\y.z)) M N —7% M for all termsM and N:
(Az.(Ay.x))MN
—5 (\y.2)la == M])N = Q. M)N
—5 My:==N] =M

We must also show th@iz.(\y.y))M N —7 N for all termsAf and N.

»

2.4 The Simply-Typed\-Calculus

There are two main reasons for introducing types into a language: efficiency and safety.
An example of efficiency occurs when one declares an array of 1,000 items. How
can the computer know how much room to allocate for each item? If each item is to
be an integer, then one would want 1,000 consecutive words; if each item is to be a
double, then one would want 2,000 consecutive words. However, allocating memory
“on the fly”, or allocating more memory than is necessary, is an inefficient solution.
One declares the type of an array as an aid to the compiler.

Safety is another reason to introduce types. As an example, consider attempting
to add anything other than two numbers. This results in undefined behavior, and so
should not be allowed. A similar situation occurs when the types of parameters given
to a function do not match those the function expects to receive. By providiyygea
checking algorithmthe compiler can ensure that no such errors occur.

We present a type system for thecalculus which is known as th&mply-typed
system. This name distinguishes it from more powerful systems, such as polymorphic
ones.

Definition. Let7 be a countably infinite set of type variables (written3, ...). The
set of type expressions (writteh B, .. .) is given by the grammar:

TypesA, B == a | int | bool | A — B
Thus, types are built from type variables via theconstructor.

Recall that\z. M is a function which maps to M. We recognize this by assigning
A-terms of this form the typel — B, wherez is of type A and M is of type B. We
introduce a notation to discuss types. The foundation of this notationdssammption
which is writtenz : A and read is of type A”.

Definition. A contextis a list of assumptions, : A,,...,z, : A,, such that no
variable appears more than once. We denote contexis. byyping judgmentsre
writtenT" - M : A, wherel' is a contextM is a term andA is a type. Judgments are
read “in the context’, M is of type A.”

¢From these definitions we are able to majgEng rules which denote an if-then
relationship between judgments. For example, the rule

r:AI'FM:B
I'Xe.M:A— B

is read “if the assumption : A and contexi” makeM of type B, thenl makes\z. M
of typeA — B

The simply-typed\-calculus introduces a new restriction on function application.
Recall that in the untyped-calculus function applications of the fori? NV can be
done between any/ and N. However, once one takes the consideration of types into
account, such applications are only logicabfis of type A — B andN is of type A.
That is, M must be of function type anty must be of the same type a¢’s domain.

Table 1: Typing rules for the simply-typedcalculus

r:AT'HFM:B '-M:A— B 'EN:A
x: ATkFz: A 'XM:A—B I'FMN:B

The result of this application is a term of type Thus, we have the following judgment
regarding application:

'-mM:A—B F-N:A
I'FMN:B

The complete typing rules for the simply-typgetalculus are showing in Table 1.
A type derivationis the derivation of a typing judgment by repeated use of the
typing rules.

Definition. We say that a term/ in the simply-typed\-calculus iswell-typedif there
exists some typing derivation wifi - M : A as its conclusion for sonmié and A.

The types that we have presented in this system are “implicit”. This means that
terms are not annotated explicitly with their types; types are instead treated as a prop-
erty of the terms, and it is possible for a term to have several types. For example, the
identity function has the typd — A for any typeA. One can even consider— «a to
be themost general typef this term, and the type4 — Aand(B — C) — (B — C)
to beinstancef it. As we will see in Section 3.3, these concepts provide the founda-
tion for type inference algorithms.

We now give examples of terms and their types.

Example 2.3 (The Type afc.(A\y.z)). Recall from Example 2.2 thatx.(A\y.z) repre-
sents the boolean value true. We wish to ascertain whether or not this term is well-
typed. We first apply the rule for abstractions:

z: A lFA\yx:B
'+ Xe.(Ayx): A— B

SinceAz.(A\y.z) is an abstraction, it must have the typde— B for some typesA
and B. But this will only hold if \y.z has typeB under the assumptions: A andI.
But asAy.x is a function, and the in Ay.z is bound to the outermost, the typeB
must in fact beC — A for some type’.

y:Cix: ATkHz: A
z: Al Ayz:C— A
'kXz.(Ayx): A— (C— A)

Thus, \y.x has the typeC — A if, under the assumptiop : C, we havez :
A, T+ z: A. As all of the subterms ofz.(A\y.z) can be assigned a type, the term is
well-typed. O

Example 2.4 (An Untypable TermiNot all terms are well-typed; an example is the
termzz. Recall that for applicationd/ N the termM must have typed — B while
the termN must have typed. But for M = N = z, this is impossible, as a variable
may not have more than one type in the same expression.

2.5 Summary

We can now list three ways in which the untypkdalculus relates to functional pro-
gramming:

1. Functions can be passed as arguments to other functions. One example is

(Az.2y)(Nz.2) —p aylr = Az.z] = (Az.2)y —p z[z :=y| = v.

2. Functions can be the results of functions or programs. One example is
(Az.z)(Az.zy) —p 2|z == Az.zy] = M.y,
The result is a function which takes one argument.

3. Functions can be passed (or returned) with some of their arguments already in-
stantiated. For example, theterm

(Arrs)(Axy.zy)z)

passes the functiohnzy.xy, with the variablexr already mapped ta, to the
function \r.rs.

3 The Language PPL

3.1 Definition of the Language

We now introduce the small functional language PPL. We denote PPL expressions by
M or N. Their abstract syntax is given by the following grammar:

PPLTerms M,N := z|n|true|false| \z.M | MN
| letz = M in N | letrecz = M in N
| O | (M, M) | i, M
| in/ M | caseM ofin} zq = Ny | ... |in}z, = N,
We give a brief explanation of these terms. The terofenotes a variable and the
termn denotes an integer constant. The terms true and false are the boolean values.

The termAz. M represents the function that mapso M. The termM N denotes
the application of the functiof/ to the argumeniv.

The term(letz = M in N) is abinding definingz to be an abbreviation fok/
inside the termN. The term(letrecz = M in N) is similar to (letz = M in N),
except it also allows: to occur recursively inV/.

The term() represents the unique O-tuple. The PPLtéM, ... , M,,) represents
ann-tuple of PPL terms, where > 2. The term pjl M is the ;™ projection of then-
tuple M. The term id, M is atagged termit denotes the injection af/ into the j™
component of: disjoint sets.

(caseM of inl z; = Ny | ... |in" z, = N,) represents a case distinction on the
tag of M. If M evaluates to a tagged terni i, then evaluateV;, wherex; is replaced
by P.

We now list the ways in which a variable occurs bound in PPL:

1. z occurs bound in the terthe. M. The scope of is M.
2. x occurs bound in the teriflet z = M in N). Here the scope aof is N.

3. z occurs bound in the terrflet recx = M in N). Here the scope of is both
M andN.

4. Inthe term
caseM ofin z; = Ny | ... |in"z, = N,,

the variables, . .. , z,, occur bound in the term&y, ... , N, respectively.

All other occurrences of variables in PPL terms are free.

We definea-equivalence and substitution for PPL terms by analogy with)the
calculus. We omit the formal definitions here. As before, we identify terms up to
a-equivalence.

3.2 Call-by-Name Reduction

For the evaluation of PPL terms we adopt ttadi-by-name (CBN¥trategy. The rules
for this evaluation strategy are given in Table 2.

Definition. The PPL terms;, n, true, false \z.M, (), (My, ..., M,) and ir{L M are
in CBN normal form

Note that a CBN normal form, like 8-normal form, does not reduce any further.
There are terms, however, which have no reduction but are not normal forma{e-g.
pi{L true). We say that such terms causa-time errors and we writeM —,, error.

The difference between CBN angireduction lies in when one reduces. #A
reduction one reduces whenever possible. But in CBN reduction one never reduces
inside an abstraction, injection, let, let rec, tuple, or the right-hand-side of a case. Also,
in the termM N we reduce only\/, and notV.

This last rule is the reason this semantics is called call-by-name (as opposed to call-
by-value). In passingv as a parameter tdx. M, we substituteV as an unevaluated
term into the body of the function, rather than first ascertaining its value.

10

Table 2: Evaluation rules for PPL

(1) (M. M)N —,, M[z := N|
@) Mo M
MN —, M'N

(3) letz = M in N —,, N[z := M|
(4) letrecx = M in N —,, N[z :=letrecx = M in M|
(5) pit (M, ..., M,) —, M;

/
(6) piv,]\]\ﬁ :: ﬁé M’
(7) (caseif Mofin.zy = Ny |...|in"x, = N,) —, Nj[z; :== M]
(®) M 2

caseM of ... —, caseM’ of ...

In the presence of predefined function symbols there will be additional evaluation
rules and normal forms. For instance, if we add a basic function plus we need to add
the following rules:

M —, M’ N —,, N’
plusMN —,, plusM’'N plusm N —,, plusm N’ plusmn —, m+n

The meaning of these rules is as follows. Given the expregpiosM N), repeat-
edly reduceM until it is in normal form (an integer). Then reduéé until it is in
normal form (an integer). When both arguments are in normal form, add them.

We also need to add terms of the fofplus) and(plus /) to the definition of CBN
normal form, as they are functions which are both legal and should not be evaluated
further. The situation for other function symbols is analogous.

We use— to represent the reflexive transitive closure-ef. We write M || M’
if M —% M’ andM’ is a normal form. We writé\/ | error if there exists\/” such
thatM —* M’ andM’ —,, error.

The reduction rules have the following interesting property:

Lemma 3.1. The evaluation rules for PPL adeterministic That is, for all PPL terms
M there exists at most on¥’ such that\ —,, M.

Proof. The proof is by induction on the structure &f.

11

SupposeM = z, n, A\z.N, true, false,(), (M,...,M,), orir),. ThenM is a
normal form and does not reduce any further. The claim follows trivially.

In all other cases, suppodé —,, M’.

If M = NP thenM’ is determined by the structure of. If N is a normal form
then M can only reduce by rule (1) from Table 2. Thud, is uniquely determined
by N andP. If N is not a normal form, thed/ can only reduce by rule (2). Thus,
M’ = N'P,whereN —, N’. By the induction hypothesigy’ is uniquely determined
by N. It follows that M’ is uniquely determined as well.

If M = (letz = Nin P), then M can only reduce by rule (3). Thud{’ is
uniquely determined. Similarly, iM = (letrecz = N in P) then the only rule that
applies toM is (4). In this casé/’ is uniquely determined as well.

If M = piiI N thenM’ is determined by the structure of. If NV is a normal form
thenM can only reduce by rule (5). Thus/’ is uniquely determined by. If N is
not a normal form, thed/ can only reduce by rule (6). Thud/’ = pi’, N’, where
N —, N'’. By the induction hypothesisy’ is uniquely determined byv. Thus,M’
is uniquely determined as well.

If M = (caseN of...), thenM’ is determined by the structure of. If N is a
normal form then/ can only reduce by rule (7). Thu{’ is uniquely determined by
N. If N is not a normal form, thed/ can only reduce by rule (8). Thud/ —,, M’,
whereM’ = (caseN’ of ...). By the induction hypothesigy’ is uniquely determined
by N. Thus,M’ is uniquely determined as well. O

It follows from the lemma and the above remarks that for any téfithere exists
at most oneV!’ € (TermsU errot) such thatM || M.

3.3 TypesInPPL

We introduce a type system for PPL which is analogous to the one defined for the
simply-typedA-calculus in Section 2.4.

Definition. Let7 be a countably infinite set aype variablegwrittena, 3, ...). The
set of type expressions for PPL is given by the grammar:

A/Bu=alint|bool | A— B | Ay x...xA, | 1| Ai+...+ 4, |0,
wheren > 2.

The typeA — B is the type of functions which map values of tydeto values
of type B. The typeA; = ... x A, is the product of the typed; throughA,,. Its
elements arex-tuples of the form(M, ... , M,,), where eachV/; is of type A;. The
type A1 + ...+ A, is the disjoint union of the typed; throughA,,. Its elements are
tagged terms of the formdn\/, whereM is of typeA;. The type0 is the empty type.

The typel is the unit type; it has the unique eleméint

The typing rules for simply-typed PPL are given in Table 3.

Note that some PPL expressions are well-typed in the empty context. For example,
true is always of type bool, and similarly for false. As with the simply-typezhlculus,
typing isimplicit. This translates to programmers not needing to state the type of a
variable or function; he need only use it consistently.

12

Table 3: The typing rules for PPL

z:ATFz: A

neN
T'kn:int

T I true: bool

I' I false: bool

z:ATFM:B
'kXxx.M:A— B

'M:A— B T'EFN:A
I'-MN:B

r-mM:A rz: A TFN:B
I'+tletx=MinN:B

z: A TEFM:A z:ATFN:B
I'~letrecc=MinN:B

I'EM:A; *...x A,
I'Fpi;, M : A;

r=(:1

CHM :A, ... TFM,:A,
CE(My,... ,M,): A1 x...x A,

T+ M: A
Pkinp M: A +...+ A,

'EM:A+...+ A, z; A, TEN;:C (forl1 <i<mn)

I FcaseM ofin, x;y = Ny | ... |intz, = N, :C

13

In the presence of predefined function symbols, there will be additional typing rules
giving the type of each such symbol. For example,

'k plus:int — int — int

is the typing rule for plus.

3.4 The polymorphic type system

We now extend the type system with a form of polymorphism known as ML-polymor-
phism. The polymorphic type system rests on the notiotypé schemaswvhich are
expressions of the form

Voai ... Va, . A.

Hereaq, ... ,«, are type variables; > 0, and A is a type expression. Notice that
quantifiers can occur only at the top level in a type schema; there are no quantifiers
inside A. The type variablea, ... , «, areboundin the above type schema, and we
identify type schemas up to the renaming of bound variables. We sometimes denote
type schemas by, T,

We write A[a; := A4, ... ,a, := A,] for the result of simultaneously substituting
the type expressiond,, ... , A,, for the type variables, . .. , a,, respectively, in the
type expressioml. We say that the type expressidnis ageneric instancef the type
schem&/a; ... Vo, . Aif B = Ala; := Ay,...,«a, := A,] forsomeA,, ... A,.

Before stating the polymorphic typing rules, we first generalize the definition of a
contextI'. A polymorphic contexis a listxy : Si,...,xz, : .S, of pairs of a variable
and a type schema. The old definition of a context is a special case of this newer one,
since a simple type (in the sense of the simply-typed system) is just a type schema
with zero quantifiers. Apolymorphic typing judgmeris an expression of the form
I' = M : A, wherel' is a polymorphic context)M is a PPL term, andl is a type
expression. It is important to note that quantifiers may occuy;, iout not in A.

The rules for the polymorphic type system are identical to those for the simple type
system, except for the rules for variables, “let”, and “let rec”. These modified rules are
shown in Table 4. In the rules for “let” and “let recyy, . . . , o, are type variables that
are not free if".

This type of polymorphism was first described for the programming language ML
by Milner and Damas [2]. An important feature of this type system is thatdesd-
able That is, a compiler can decide whether or not a given program is typable in this
system. We describe such an algorithm for PPL programs in Section 4.

3.5 Type Soundness

We now formally state the relationship between PPL’s type system and the CBN re-
duction strategy. Before proceeding, we first prove a property about the substitution of
PPL terms.

14

Table 4: The polymorphic typing rules for PPL

(1) T STz 4 ,Where A is a generic instance of S
@) '-M:A z:Vay...Va, A, TFN:B whereay,...,a,
I'kletx=MinN:B ’ not free inl’
(3) r:ATHEFM:A z:Vay...Ya, A, TFN:B whereay,...,a,
I'letrecx=MinN:B > not free inI

Lemma 3.2 (Substitution). If z : Vo ... Va,,.B, ' N : AandI' + P : B, where
ay,...,a, € FV(T),thenl' F N[z := P] : A.

Proof. The proof is by induction oiv.

Suppose thatv = z. We have assumed that: Va;...Va,.B,I' - z : A.
From rule (1) in Table 4, it follows that is a generic instance &f; . .. a,,.B. Thus,
A = Blag := Ay,... ,a, = A,] for some type expressions,, ... , A,.

We have also assumed tHat+ P : B. Sinceas,... ,«, are not free irl’, we
can replace all free occurences @f, ... ,«a, by the type expressiond,,... , A,
in the derivation ofl' = P : B. The result is a derivation df -+ P : A. Thus,
'k z[z := P] : Aas desired.

Suppose thalv = n,true false () or y, wherey is a variable and; # x. Then
x ¢ FV(N), and soN = N[z := P]. The claim follows.

Suppose thatv = A\y.M and N : Va;...Va,,.B,T' + x : A. Without loss
of generality,y # z. From Table 3 we know thatt = C — D andy : C,zx :
Vay ...Va,,.B,I' = M : D for some type expressions and D. We want to show
thatT - (A\y.M)[z := P] : C — D. But(\y.M)[z := P] = \y.(M[x := P)),
and we know thay : C,T' - M|z := P] : D from the induction hypothesis. Thus,
' (Ay.M)[z := P] : C — D, as desired. The remaining cases are similar to this.
O

Lemma 3.3 (Subject Reduction).If I' = M : AandM —,, M’ ,thenl' - M’ : A.

Proof. The proof is by induction on the derivation 8 —,, M’. There is a case for
each rule in Table 2.

Suppose thal/ = (Az.N)P and M’ = N[z := P]. By assumptionI’ +
(Az.N)P : A. From the typing rules in Table 3, it follows that: B,T - N : A
andI' - P : B for some type expressioB. It follows from Lemma 3.2 that® +
Nz := P]: A.

Suppose thald = NP andM’' = N'P, whereN —,, N’. From the rules in
Table 3, we cantellthdf - N : B — A andl’ - P : B for some type expression
B. From the induction hypothesis we know tHat- N’ : B — A. It follows that
M :A.

15

Suppose that/ = (letx = Pin N) and M’ = N[z := P]. By assumption,
'+ (letz = Pin N) : A. From the polymorphic typing rules in Table 4, we know
thatl' - P: Bandz : Vay ...Va,,.B,I' = N : A, for someaq, ... ,a, notfreeinl.

It follows from Lemma 3.2 thal' - N[z := P] : A.

Suppose thal/ = (letrecz = Pin N) andM’ = N[z := (letrecz = P in P)].

By assumption[- (letrecz = P in N) : A. From the typing rules in Table 4, we can
tellthatz : B, + P: Bandz : Vo ...Va,,.B,I' - N : A, forsomex;, ... , a, not
free inT". Also from Table 4, we know thdt + (letrecx = Pin P) : B. It follows
from Lemma 3.2 thal' - N[z := (letrecz = Pin P)] : A.

The remaining cases are similar to the ones proved aboue.

Lemma 3.4 (Correctness).If - M : AthenM -, error.

Proof. The proof is by induction oi/.

Suppose that M : A andM is not a normal form. We must show thiat —,, M’
for someM’. SinceM is not a normal form, we only need to consider the cases where
M is an application, a “let” or “let rec” expression, a projection or a case distinction.

Suppose tha/f = NP. By assumption|- M : A. From the typing rules in
Table 3 we know that N : B — A and+ P : B for some type expressioB. If N
is not a normal form, we hav® —,, N’ for someN’ by the induction hypothesis. In
this caseM reduces by rule (2) in Table 2. I¥ is a normal form, however, it follows
from Table 3 thatV must be a variable or a-abstraction. But since N : B — Ain
the empty context)V cannot be a variable. Thu8] = A\z.Q for some variable: and
term@. It follows thatM —,, Q[z := P].

Suppose thal/ = (letz = Pin N). ThenM can be reduced directly from rule 3
in Table 2. The case fa¥/ = (letrecz = P in N) is similar to this.

Suppose that/ = pi; N. By assumption;- M : A. If N is not a normal form, we
haveN —,, N’ for someN’ by the induction hypothesis. In this cagd, reduces by
rule (6) in Table 2. IfN is a normal form, however, then from the rules in Table 3 we
know that- N : A; x...x A, andA; = A. Table 3 also tells us that the only normal
forms of typeA; = ... x A, are variables and-tuples. Butsincé N : A; x...x A,

in the empty context)N cannot be a variable. Thud] = (Ny,...,N,). It follows
thatM —,, N;.
Suppose thad/ = (caseN of inl z; = Ny | ... |in"z, = N,,). Recall that-

M : A. From the rules in Table 3 we know thatN : A; + ...+ A,. If N is not

a normal form, we havé&y —,, N’ for someN’ by the induction hypothesis. In this
case,M reduces by rule (8) in Table 2. I¥ is a normal form, however, then Table 3
tells us thatV must be a variable or injection. But sineeN : A; + ...+ A, in the
empty contextN' cannot be a variable. Thua] = in/ P for somej. It follows that
M —,, Nij[z; :=M]. O

Proposition 3.5 (Type Soundness)If - M : AthenM /47 error.

Proof. Suppose that M : AandM —} M’. By repeated application of Lemma 3.3,
we know that- M’ : A. From Lemma 3.4 we havk/’ /,, error. Therefore\l /4%
error. O

16

4 Type Inference

Recall that PPL is both a polymorphic and a functional language. In Section 1 we
demonstrated that this combination allows one to create very robust higher-order func-
tions. However, these functions raise a problem of their own: explicitly annotating
their types is an error-prone endeavor.

For example, consider thexists2 function in ML. This function takes a list of
typea and a list of type 3, as well as a function of type — (3 — bool. The function
returns true iff a; b; = true for anya; andb;, wherea, is thei!" element of lista. It
returns false otherwise. The type signature of this function is

(e — B — bool) - alist — glist — bool .

Now consider writing a functioxorexists2 ~ which, given two listsa and b,
and two functionsf; and f», returns true ifexists2 f ab) holds for exactly one of
f = fiandf = fs. The code for this function is very succinct:

let xorexists2 f1 f2 a b = xor (exists2 f1 a b)
(exists2 f2 a b),

wherexor is the exclusive or function. But this function generates the following
signature:

(e - B —bool) = (e — 8 —bool) — «alist — glist — bool

The signature for this function is as long as (and more opaque than) the function itself!
Writing such signatures is something which one would like to avoid if possible.

In Section 2.4 we discussed the importance of a compiler knowing the type signa-
ture of functions. We have just shown, however, that it is not always desirable to have
the programmer explicitly declare the signature of her functions. The ideal situation
appears to involve the compilarferring the types of the variables and functions in a
program. This would give us both the safety which type-checking algorithms provide
as well as free us from writing extensive annotations. There is also the hope that the
compiler can infer more general types than the programmer can.

4.1 Unification
We begin our discussion of polymorphic type inference with a few definitions.

Definition. A type substitutions a functiono from variables to type expressions. If
A is a type expression, then we writ¢ A) for the result of applyingr to each type
variable inA. If o andr are type substitutions, we define theampositionr o o to
be the type substitution which maps each type variatiie 7 (o («)). A unifier of two
type expressiond andB is a substitutiorr such that(A4) = o(B).

Here are some examples of unifiers:

1. LetA = o — fandB = 8 — 4. Then a unifier forA andB iso = {a —
a, B+ a,v+— a}. Verify thato(A) = 0(B) = a — a.

17

2. LetA = (B« p3) — fandB = a — (v *+). Then a unifier forA and
Biso ={a— (yx79)*x(yx7),8 — (y*7),y — ~}. Verify that
o(A)=0(B) = ((v*7)*(y*7)) = (v*7).

3. LetA = aandB = a — (. ThenA and B do not have a unifier. A proof
of this can be done by contradiction. Suppesis a unifier ofA and B. Then
o(a) = C ando () = D for some type expressiois andD. Buto(A) = C
while¢(B) = C — D. Thus,o(A) # o(B).

4, LetA = ax B andB = v — §. ThenA and B do not have a unifier. A
proof of this can be done by contradiction. Suppess a unifier ofA and B.
Theno(a) = C,0(8) = D, o(vy) = E ando(§) = F for some type expressions
C,D,EandF.Buto(A) = CxDwhileo(B) = E — F. Thus,c(A4) # o(B).

As the above examples show, not all terms can be unified.

If o ando’ are type substitutions, then we say thas more generathano”’ if there
exists a substitutiom such thats’ = 7 o o. A unifier o of A and B is called amost
general unifierof A and B if it is more general than any other unifier afand B.

An interesting property of most general unifiers is that if two type expression have
any unifier, then they also have a most general one. Furthermore, the most general
unifier can be computed efficiently by a unification algorithm which was originally
published by Robinson [9].

4.2 Polymorphic Type Inference

Let S be a type schema. We write{.S) for the result of applying to eachfreetype
variable inS. Here we rename bound variables as necessary to avoid name clashes, as
was done fon-terms in Section 2.2. [f is a context, we writer(I") for the application

of o to each type schema in

The behavior of the type inference algorithm is as follows: when given a PPL
programM, it returns the most general type such thatM : A is well-typed. If no
such typeA exists, the algorithm fails.

More generally, we provide an algorithm for the following problem: given a typing
judgmentl’ - M : A, find a substitutionr such that(T') - M : o(A) is well-typed
according to the polymorphic typing rules. If such a substitution exists, return the most
general one. Otherwise, fail. This algorithm for polymorphic type inference was first
discovered by Milner [7] and was later refined by Damas and Milner [2].

The algorithm works by recursion on the structure of the té#m In each case,
the algorithm corresponds to a “bottom-up” reading of the typing rules in Tables 3
and 4. Given a typing judgmefit - M : A, we find the substitutiom as follows.

Here we list the cases fav/ = true, falsen, z, Az.N, NP, (letz = N in P) and
(letrecz = N in P). The other cases proceed by similar reasoning. If any of the
mentioned unifiers do not exist, the algorithm fails.

1. If M = true or false, then let be the most general unifier ¢f and bool.

2. If M = n,n € IN, then leto be the most general unifier gf and int.

18

3. If M = x, find the assumptior : S in I". Let B be a fresh generic instance of
the schema), and leto be the most general unifier af and B.

4. If M = Mx.N, let « and 3 be fresh type variables. Applying the algorithm
recursively, find the most general substitutiorsuch thatr makesl', z : o +
N : [well-typed. Letr’ be the most general unifier of anda — 3. Let
c=T1or.

5. If M = NP, let 8 be a fresh type variable. Applying the algorithm recursively,
find the most general substitutionsuch thatr makesI' - N : § — A well-
typed. Letl” = 7(I') and B’ = 7((). Let 7' be the most general substitution
that maked"” + P : B’ well-typed. Letoc = 7' o 7.

6. If M = (letx = N in P), let~ be a fresh type variable. Applying the algorithm
recursively, find the most general substitutioisuch thatr makesl' - N : v
well-typed. Letl” = 7(I"), A’ = 7(A), C' = 7(y) and letf,..., 03, be
the type variables which are free @ but not inT”. Let 7’ be the most general
substitution that makes: V3, ... 3,.C’, IV = P : A’ well-typed. Lets = 7/or.

7. If M = (letrecx = Nin P), let v be a fresh type variable. Applying the
algorithm recursively, find the most general substituttosuch thatr makes
z:v D F N :~vwell-typed. Letl” = 7(T'), A’ = 7(A), C' = 7(y) and let
51, ..., Bn be the type variables which are free(fibut not inI”. Let 7’ be the
most general substitution that makes Vg ... 3,.C’, IV + P : A’ well-typed.
Leto =7"0oT.

5 Abstract Machine Interpretation

5.1 Definition of the Abstract Machine

We now discuss a method of implementing the language PPL. As a functional lan-
guage, we wish to be able to pass functions as parameters to other functions with some
(possibly none) of their parameters instantiated. The syntax of an earlier example of
(B-reduction leads us to an idea of how to accomplish this:

(Ar.rs)(Axy.zy)z) —g rslr == (Azy.zy)z] = (Azy.zy)z)s.

That is, when given the functiokr.rs we evaluate the terms while also keeping track
of what its free variables map to.

Our implementation of PPL is based on the above idea. But rather than directly
keep track of what the variables map to, we instead use a level of indirection, and
keep a list of pointers (addresses) to what the variables map to. We first describe the
implementation in terms of an abstract machine, in the style of Krivine [5].

Definition. Let. A be a countable set of addresses (writighus,, ...). A term closure
is a pair{ M, o}, whereM is a PPL termg is a partial function from variables td,
andFV (M) C dom(c). A match closurgs a pair{(in} z; = Ny | ... | in®z, =
N,,), o} with analogous definitions and provisions far

19

A heapis a partial function from addresses to closuresstéackis a list whose
elements are addresses, integers or labels.

A stateof the abstract machine is atripléM, o}, h, k), where{ M, o'} is a closure,
his a heap and is a stack.

We write nil for the empty stack and: « for the stack with topmost elemehand
remaining elements. We writec(xz — a) for the partial function which is identical
to o except that it also mapsto a. We use a similar notation for heaps and writé
for the size of the stack.

The transition relation of the abstract machine is denoted-hy. We write

{M, o}, h,K) —m (M 0"}, W K

if the abstract machine can go from the stdt&/, o}, h,) to the staté{M’, o'}, 1/, k")
in a single step.

We write ({M, o}, h, k) —,, halt(s) when the abstract machine halts with result
s. The possible results are:

su=n | true | false| “in” | “()” | “n-tuple” | “injin",

wheren andj are integers.

Table 5 contains the list of the abstract machine rules for all PPL terms. Here we
explain the rules fohxz.M, M N andz.

The rules for evaluating a-abstractiom\z. M are:

({dz.M,c},h,a:: k) = ({M,0(xz — a)}, h, k).
({\x.M,c}, h,nil) —,, halt(“fn").

In order to evaluatex. M, the machine pops the address for a closure from the stack

and evaluated/ undero plus the additional bindingr — «). Hereaq is the address of

x's closure. If the stack is empty, however, the program halts. In this case the result of

the program is a function. Thus, abstractions can be thought of as pops from the stack.
The rules for evaluating an applicatidd N are:

({MN,o},h,k) = ({M,0},h(a — {N,0}),a:: k), whereais fresh.
{Mz,0},h, k) =m ({M,0},h,a:: k), whereo(z)=a.

Recall that we are using the call-by-name reduction strategy. The abstract machine
implements this by not evaluatiny before the function call. Sinc& may be eval-
uated later, however, we must save the mapping of its variables. We accomplish this
by building a closure foV on the heap and pushing its address onto the stack. Thus,
applications can be thought of as pushes onto the stack. In the case where the argument
is a variabler, we use an optimization: instead of building a new closure:fave use
the already existing closurg(x).

The rule for evaluating a variable is:

{x,0},hyk) =m {M,7},h, k), whereo(z)=aand h(a) ={M,7}.
Variables in PPL only have meaning in the context of a closure. Evaluating a vari-

able can be thought of as a jump to its closure.

20

Table 5: Abstract machine rules for PPL
o {z,0},h, k) = ({M, 7}, h, k), whereo(z) = a, andh(a) = {M, 7}.
o ({Mz,o},h,k) —m ({M,c}, h,a :: k), whereo(z) = a.

e ({MN,c},h,k) —=m ({M,c},h(a — {N,o}),a ::), whereN is not a
variable and: is fresh.

o ({Me.M,o},h,a:: k) = ({M,o(x— a)},h, k).
o ({Az.M, o}, h,nil) —,, halt(“fn").

o ({letx =MinN,c},h,k) = {N,o(x — a)}, h(a — {M,c}),), where
a is fresh.

e ({letrecx =M in N,o},h,k) —pm {N,o(x — a)},h(a — {M,o(z —
a)}), k), wherea is fresh.

e ({n,o}, h,nil) —,, halt(n).

e ({true o}, h,nil) —,, halttrue).

o ({falsg o}, h,nil) —,, halt(false).

{0, 0}, h,nil) =, halt(“(").
{(My,...,M,),c}, h,nil) —,, halt“n-tuple”).

{(M,...,M,),0},h,jt K) = {Mj, 0}, h,k),If1<j<n.
{pIZL M7U}ah>’£> —m <{M,0'},h,j o /<,>.

(
(
(
(
(
(
(
(

e ({ind M, o}, h,nil) —,, halt“injin").
o ({ind M,o},h,a = k) — ({\2;.N;,7},h(b — {M,0}),b =), where

h(a) = {inl z; = Ny | ... |in"z, = N,, 7} andbis fresh.
e ({caseM ofin} z; = Ny |...|In"x, = N,,0},h, &) —m ({M,0}, h(a—
{int 2y = Ny |...|iIn"x, = N,,0}),a: k), wherea is fresh.

21

Table 6: Abstract machine rules for “plus”

1. ({plus o}, h, k) —,, halt(*fn”) , where|x| < 2.

2. ({plusc},h,a 2 b k) —p {M,7}, h,plus, 2 b 2 k) , whereh(a)
{M,}.

3. ({m,o},h,plus; 2 b k) —p, ({N,7},h,plus, :: m :: k) , whereh(b) =
{N,7}.

4. {n,o},h,plus, ::m 2) =, ({m+n,0}, h, k).

In addition to the rules shown in Table 5, there are also rules for each basic function
symbol; a list of all basic function symbols can be found in Section 7. We give the rules
for “plus” in Table 6.

Rule 1 allows “plus” and “plus\/” to be legal PPL programs. Both of these ex-
pression are functions and cannot be evaluated further.

One need not pass a number to “plus”; one can also pass a term which evaluates to
a number. Rule 2 states thaf{fflus, ¢} is to be evaluated with the addressesndb as
the topmost elements of the stack, the machine pdpsm the stack, pushes the label
“plus,” onto it, and evaluates the closure whicipoints to. Let the result of evaluating
M bem. At this point Rule 3 applies, and the machine pops the label ;plasd
the address from the stack and pushes and the label “plug’ onto it. The machine
then evaluates the closure whitlpoints to. Let the result of evaluating ben. At
this point Rule 4 applies. The machine then pops two elements from the stack and
computesn + n.

5.2 Properties of the Abstract Machine

The transition rules for the abstract machine given in Table Slaterministic That
is, for each state there is at most one successor or “halt” state.

We write ({M, o}, h,k) —,, error when({M,oc},h,x) cannot legally halt or
move to another state. We write?, for the reflexive transitive closure e#,,,.

Examples of term3@/ for which ({M, o}, h,) —¥, error areM = pij false and
M = 5 true. The reader should verify that these terms result in an error, and also
that they are not well-typed. In fact, we can state the relationship between the abstract
machine and CBN-reduction more generally as follows:

Proposition 5.1. Let M be a closed PPL program, and letand i be arbitrary. Then
1. ({M,o}, h,nil) —=F halt(n) iff M —7 n.
2. ({M,c}, h,nil) =7 halttrue) iff M —7 true.
3. ({M, o}, h,nily =7 halt(false) iff M — false.

22

4. {M,c}, h,nil) =% halt(“fn”) iff M —* \z.N, for someN (or, in the pres-
ence of basic functionsy/ —* M’ for some other normal form’ of function
type, such as (plud)).

5. ({M,c}, h,nil) =X halt(“()") iff M —* ().

6. ({M,o}, h,nily = halt(“n-tuple”) iff M —* (Ny,...,N,)forsomeNy,... ,N,.
7. ({M, o}, h,nil) —%, halt“inj/n") iff M —*inl N, for somej, n andN.

8. ({M, o}, h,nily =5 erroriff M — error.

Corollary 5.2. If '+ M : Athen{{M,c}, h,nil) /%, error.

Proof. From Proposition 3.5 we know th&t+ M : A impliesM /4% error. From
Proposition 5.1 we know tha{ M, o}, h, nil) —7, error if and only if M — error.
Thus,({M,o}, h, k) /5 error. O

6 A Compiler for PPL
6.1 An Idealized Assembly Language

In this section we describe an idealized assembly language which will be the target
language of the compiler. Its chief differences to actual assembly languages are that we
assume an infinite number of registers, and that we have a built-in opcode for dynamic
memory allocation. (This is usually realized by an operating system call). We denote
registers by, C, r1,r9,.... Each register can hold an integer or a pointer. There is a
special registef'S which holds the current stack size.

Memory locations can also be denoted by symbtalels which we denote by
ly,12,.... Anl-value (assignable value) is either a register or a memory locétior]
specified by a register and an integer offset. The expressiofir, n] refers to the
memory locatiorn words after that pointed to by the registerA symbolic valuas
either an I-value or #teral value A literal value is either an integer constant, written
#n, or a labell.

The assembly language has the following opcodes. kHeamges over valuesy
over |-values, and ranges over results (as defined for the abstract machine above).

23

Opcode

Meaning

JUMPw Jump to address

EXIT s Exit and print strings

EXITINT v Exit with integer result

EXITBOOLv Exit with boolean result falses(= 0) or true @ # 0).
LOAD [v,v Store the value in locationiv

POPlv Pop a value from the stack and store ifin

PUSHv Push the value onto the stack

ALLOC lv,v Allocatev words of memory and store a pointer to the first on&in
CMPu1, Uy Compare the two values, and remember the result
BEw If cmP results in equal, jump to locatian

BGv If cMmP results in greater than, jump to location

BLw If cMP results in less than, jump to location

BNEv If cMmP results in not equal, jump to locatian

BGEwv If cMmP results in greater than or equal jump to location
BLEw If cmpP results in less than or equal to, jump to location

There are also opcodes to calculate basic functions, sueh@év, v (addwv to [v)
andMULT (v, v (multiply lv by v).

6.2 The Translation of PPL Terms

We now explain how PPL terms are represented in the assembly language. An address
is represented as a pointer, and integers are represented as themselves. Boolean values
are also represented as integers, where falfeand true= 1. The heap is represented

as allocated memory, and the stack of the abstract machine is represented by the stack
in the assembly language. A PPL term is represented as assembly code.

Aclosure{M, o} (whereFV (M) = z1,... ,xy) is represented by a data structure
that occupie% + 1 words of memory. At offsef is a pointer to the code fav/, and at
offsets1 throughk are pointers to the values foi, . .. , z, respectively.

A match closure{(in} z; = Ny | ... | in"z, = N,),c0} (Where the free vari-
ables of the matching ate, . . . ,) is represented as a data structure that occupies
k + n words of memory. At offset§ through(n — 1) are pointers to the code for
Az;.N;, wherel < i < n. At offsetsn through(n + k& — 1) are pointers to the values
for xq,... ,zy, respectively.

Aterm closure is invoked by putting a pointer to the closure into the special register
C, and then jumping to the address at offgetSimilarly, the;"" branch of a match
closure is invoked by putting a pointer to the match closure@hand then jumping to
the address at offsgt— 1.

If an integer or a boolean value has been computed, the convention is to put the
value in the special registéf and then jump to the address on top of the stack. If the
stack is empty, thel is the final result of the program.

The translation of a PPL term is defined relative to aymbol tables, which is
a function that maps the free variablesdfto symbolic values. The notatidd/] s

24

means “the assembly code for the PPL expresdibnwhere the value of each free
variablez is found ins(z).”

The definition of[M], for all PPL termsM is given in the Appendix. Compare
these definitions with the abstract machine rules for PPL terms given in Table 5. Here
we explain the definition of\z.M],.

[Me.M]s =
CMP SS, #0
BG l
EXIT “fn”

[: pop r
[[M]]S(IL"—"I')

wherel is a new label and is a new register.

Recall that if the stack is empty thexx. M is the result of the program, and the
program returns “fn”. If the stack is not empty, however, the machine pops the address
of a closure from the stack and evaluafgsunder the current symbol table plus the
mapping ofx to the address just popped.

Note that all assembly code consists of a number of labeled segments, each of
which ends in aumMpPor anexiT.

The code for the basic functions is more complex than that of the basic PPL terms.
We give the assembly code for plus in Table 7. Its relation to the abstract machine rules
is as follows.

The code for “plus” checks to see if there are less than two elements on the stack;
if s0, it halts with the result “fn”. Thus, “plus” tests if rule 1 from Table 6 applies.

If rule 1 does not apply then rule 2 does; rule 2 is realized at the labg|.pHeye
the machine pops the address of the closure for the first argument to the régister
then pushes the label plusnto the stack and invokes the closure pointed t@'byrhe
label plug functions as the return address of a subroutine call; the machine will jump
to the label plug after it is done evaluating the first closure. By convention, the value
which the closure evaluates to is now stored in the register

Now the machine pops the address of the closure for the second argument to plus to
the registeC, and saves the value bf and the return address plusn the stack. Then
it invokes the closure af'. The reader should verify that this behavior corresponds to
Rule 3.

When the second closure has been evaluated, the value of the second argument is in
the registei’, and the value of the first argument is on top of the stack. The code pops
the topmost element from the stack, adds the two arguments, and puts the r&sult in
This behavior corresponds to Rule 4. Finally, the code follows the standard convention
for integer results by jumping to the return address on top of the stack, or halting if the
stack is empty.

25

Table 7: The assembly code for plus

[[plui]s =
CMP SS, #2
BGE plus,
EXIT “fn”
plug, : POP C
PUSH plus,
JUMP [C,0]
plus, : POP C
PUSH Vv
PUSH plus,
JUMP [C,0]
plus, : POP A
ADD V,A
CMP SS, #1
BGE plus,
EXITINT V
plus; : POP T
JUMP T

7 A Guide to the Implementation

7.1 Introduction

A prototypical implementation of PPL is available on the world-wide web at [6]. It
is written in Objective Caml. The main component of the implementation is the ex-
ecutable prograrppl , which reads a PPL program and outputs compiled pseudo as-
sembly code. For reasons of portability, the “assembly code” generatggplbys
actually realized as a set of pre-processor macros in the C language; thus, the output of
ppl can be compiled by any C-compiler on the target machine.

The concrete syntax for PPL is slightly different than the syntax introduced in the
paper. For example, we writgil/2 instead ofpi i, as sub- and superscripts are
not supported in ASCIIl. Our implementation readss A, thus\x.x is the iden-
tity function. Our implementation also supports some syntactic sugar. For example,
X y z.M is interpreted a¥x.(\y.(\z.M)) . One can also writéet fun x
y z = Minstead oflet fun = \x.\y.\z.M . Both of these expressions repre-
sent the function which takes y andz as variables and maps them to the tevm

Our implementation is also lenient with match statements in case distinctions. We
allow cases to occur in an arbitrary order, with some cases duplicated or missing. In
such cases our compiler issues a warning, and if a missing case is encountered at run-
time, the program exits with an error message. We have also added several basic func-
tions to the language. We list them together with their type signatures in Table 8.

26

Table 8: The Basic Functions of PPL

Function Type Signature

plus int— int — int
minus int— int — int

mult int — int — int
divide int— int — int

mod int— int — int
greater int— int — bool
geq int— int — bool
less int— int — bool
leq int— int — bool
equal int— int — bool
neq int— int — bool
and bool— bool — bool
or bool — bool — bool
not bool— bool

if Va.bool - a — a — o

The implementation of “and” and “or” adazy- the second argument is only eval-
uated if necessary. Similarly, in the term fif N Q”, only one of N or Q) is evaluated.
The other basic functions evaluate all of their arguments.

7.2 User Manual

We now present information necessary to use our PPL compiler. There are several
flags which affect the compiler's behavior, and their behavior is summarized in Ta-
ble 9. The default behavior of the compiler is realized by tygipy flename |
wherefilename s a file which contains a PPL program. The compiler will read
the program, write its most general type to the terminal, and write its assembly code
translation to a file.

The--parse flag will cause the compiler to read and type-check a PPL program
but not compile it. The-reduce and--step flags cause the compiler to apply
CBN reduction to the input term. lreduce mode, the final normal form is printed,
whereas in-step mode, the entire reduction sequence is printed, one term per line.
The--typeinfo mode flag alters the amount of type information that is displayed
to the terminal. mode must be one ofione, all , top , let or an integer nesting
depthn. The compiler then gives type information on, respectively, no variables, all
variables, all variables defined on the top-level, variables defined only by let and let-
rec constructs, and variables defined up to a depth dhe--untyped flag causes
the compiler to not type-check the PPL program. Huptimize flag will cause
the compiler tog-reduce certain redexes before compilation, yielding more efficient
assembly code.

27

Table 9: Command line options for the compiler

Flag

Effect

(no options)

--parse, -p
--step, -s
--reduce, -r
--untyped, -u
--optimize, -z

--typeinfo mode,
-i mode

--term term
--stdin

--stdout

--output filename,
-0 filename
--help, -h
--version, -v

The default behavior. Read input from
file, print most general type to terminal,
and write compiled program to file.

Do not compile; parse and type-check
only.

Print CBN reduction sequence.
Reduce term to CBN normal form.
Omit type-checking.

Create optimized compiled code.

Print additional type information de-
pending ormode.

Useterm as input.

Read input from terminal.

Write output to terminal.

Write output to specified file.

Print help message and exit.
Print version info and exit.

28

The--term , --stdin , --stdout , and--output filename flags affect
where the compiler looks for input and where it writes the output. When using the
--term term flag one may find it useful to encloserm in quotation marks. This
will prevent shell substitutions.

The --help flag provides a list and brief description of all PPL options. The
--version flag gives information on which version of the compiler is in use.

There is also a graphical user interface for PPL cadigld . Itis written in Tcl/Tk.

In Unix, it can be accessed by typimgsh ppli at the command lineppli pro-

vides a window to type a PPL program or load a program from a file, together with
various buttons for compiling, reducing, and stepping through the reduction sequence
of aterm.

7.3 Example Programs

Our compiler for PPL comes with several example programs. Therfilgrams.txt
also available at [6], contains a list and description of each program.

8 Future Work

We have implemented PPL as a self-contained example of a functional programming
language. It is intended as a basis for experimenting with improved implementation
techniques, as well as new language features. Features that we would like to add in the
future include improved source level optimization, closure optimization, general recur-
sive types, non-local control features in the style of Mecalculus, and a run-time
system with a proper garbage collector. We are also interested in extending automatic
type inference to recursive types, and the interaction of lazy evaluation and continua-
tions.

29

9 Appendix: Assembly Code For PPL Terms

[[m]]s =
LOAD C,s(x)
JUMP [C, 0]
[Me.M]s =
CMP SS, #1
BGE l
EXIT “fn”
l: pop r

(wherel is a new label and is a new
register.)

[Mz]s =
PUSH s(x)
[M]s

[[MN]]S =
; build closure forlv
ALLOC 7, #(n+1)
LOAD [r,0],1
LOAD [r, 1], s(z1)
LOAD [r,n], s(xy)
PUSH r
[M]

Ui [N} (@im[Cal,... szn—[Cn])

(wherel is a new labely is a new regis-
ter, N is not a variable, and'V (N) =

{z1,...,20}.)
[letx = M in NJs =

; build closure forM

ALLOC 7, #(n+1)
LOAD [r,0],1
LOAD [r, 1], s(z1)
LOAD [r,n], s(xy)
[[N]]s(m»—w)

Ur [IM](aymi00),... an[Cn))

(wherel is a new labely is a new regis-
ter,andF'V (M) = {z1,... ,zn}.)

30

[letrecz = M in N], =

: build closure forM/

ALLOC 7, #(n+1)
LOAD [r,0],1
LOAD [r, 1], 8" (21)
LOAD [r,n], s (x,)
[N«

l: [[M]](;m»—»[C,l],...,wnH[C,n])
(wherel is a new labely is a new regis-

ter, FV(M) = {x1,... ,x,}, ands’ =
s(x—r).)
[[n]]s =
LOAD V., #n
CMP SS, #1
BGE l
EXITINT V
l: POP T
JUMP r

(wherel is a new label and is a new
register.)

[trug]s =
LOAD V., #1
CMP SS, #1
BGE l
EXITBOOL V

l: POP r
JUMP r

(wherel is a new label and is a new
register.)

[falsgs =
LOAD V,#0
CMP SS, #1
BGE l
EXITBOOL V

l: POP r
JUMP r

(wherel is a new label and is a new
register.)

[[()]]s = [[infl Mﬂs =
EXIT ‘0" CMP SS,#1

BGE l
[[(Ml, . e 7Mn)1|5 = EXIT “inj/n"
CMP SS, #1 l1 : ; build closure forM
BGE Iy ALLOC 1, #(n+1)
EXIT “n-tuple” LOAD [r, 0], 12
ly: POP r LOAD [r, 1], s(x1)
CMP r, #1
BNE la LOAD [r,n], s(xy)
[[Ml]]s POP C
lo : CMP r, #2 PUSH r
BNE I3 ; invoke jth branch of match closure
[Ma], JUMP [C,5 —1]
lg: ... la: [M](z,—[01].... en—[Cin])
L [[M] (wherelq, I5 are new labelsy is a new
me s register, and®V (M) = {z1,... ,zn}.)
(wheren > 2,14,... .1, are new labels,
andr is a new register.)
[[pIZL M]]S =
PUSH #j
[M],
[caseM of ingy1 = Ny | ... |infyr = Ni]s =

; build match closure
ALLoCc 1, #(k+n)

LOAD [r,0], 11

LOAD [,k —1], 1

LOAD [r, k], s(x1)

LOAD [r,k+n—1],s(x,)
PUSH r

[M]

l: Py Nl @m0, .. one[Ck+n—1])

I o [AR-Nil @y =[Ok, .. snim [Ckfn—1])

(wherelq, ... ,l; are new labelsy is a new regis-
ter, andFV (injy1 = Ny | ... |infy, = Ny) =
{.131, e ,J,‘n}.)

31

References

[1] H. P. BarendregtThe Lambda Calculus, its Syntax and Semantitath Holland,
2nd edition, 1984.

[2] L. Damas and R. Milner. Principal type-schemes for functional program8thin
Symposium on Principles of Programming Languageges 207-212, 1982.

[3] C. Hankin.Lambda Calculi: A Guide For Computer Scientis@xford University
Press, 1994.

[4] S. C. Kleene. A-definability and recursivenessDuke Mathematical Journal
2:340-353, 1936.

[5] J.-L. Krivine. Un interpreteur du lambda-calcul. Draft, available from
ftp://ftp.logique.jussieu.fr/pub/distrib/interprt.dvi, 1996.

[6] A. Lamstein and P. Selinger. Implementation of the programming language PPL,
Oct. 2000. Available from http://theory.stanford.edu/"selinger/ppl/.

[7] R. Milner. A theory of type polymorphism in programmingournal of Computer
and System Sciencgds/:348-375, 1978.

[8] G. E. Revesz. Lambda-Calculus, Combinators, and Functional Programming
Tracts in Theoretical Computer Science 4. Cambridge University Press, 1998.

[9] J. A. Robinson. A machine-oriented logic based on the resolution princple-
nal of the Association for Computing Machineiy:23-41, 1965.

32

