
Theory and Implementation of a Functional
Programming Language

Ari Lamstein∗

October 2000

Abstract

The goal of this research is to design and implement a small functional pro-
gramming language that incorporates some of the features that arise from the the-
oretical study of programming language semantics. We begin with the study of
theλ-calculus, an idealized mathematical language. We present the language PPL,
a strongly typed, call-by-name language which supports recursion and polymor-
phism. We describe a compiler of PPL into a low-level assembly language. The
compilation is based on an abstract machine interpretation and includes a type in-
ference algorithm.

1 Introduction

The foundations of functional programming languages lie in the untypedλ-calculus,
which was developed by Church in 1932. It was developed with two mathematical
goals in mind [1]:

1. To develop a general theory of functions.

2. To use that theory as a foundation for mathematics.

While the attempts at (2) were not successful, theλ-calculus developed as a rich
theory of computation [1]. It is well-known that Turing’s notion of computability is
equivalent toλ-definability; that is, the class of computable functions can be encoded
in theλ-calculus [4]. As we will see, it is this fact coupled with its simple semantics
that leads us to use theλ-calculus as a model for functional programming languages.

The principal difference between functional programming languages and their im-
perative counterparts (such as C or Java) is how programs written in them are viewed.
Programs in imperative languages are viewed as a sequence of statements that operate
by altering the content of the memory. Programs in functional languages, however, are
viewed as expressions; their evaluation corresponds to the program’s execution.
∗This research was conducted under the supervision of Peter Selinger at the University of Michigan. The

author can be contacted via email at ari@lamstein.com.

1

An effect of this is the strength of variable bindings. In functional languages such
bindings are permanent, as they are in common mathematical notation. To say “let x
= 5;” in a functional language such as ML means that one is forbidden to later assign
another value to that variable. In an imperative language, however, variable bindings
are considered “mutable,” as updating memory is a statement, and not an expression.

In a purely functional language an expression yields the same result each time it
is evaluated. Statements in an imperative language, however, can behave differently
at different times they are executed. This is because the statements can have “side
effects”, such as reading and writing to memory.

Thus, constructs such as for and while loops are seldom used in functional lan-
guages, as theexpressionsin the loop body have the same result each time they are
executed. Such loops are only useful in the presence of side effects, where one can
alter a physical property of the computer, such as the screen or an address of memory.

By minimizing side effects, one uses a higher-level approach when writing algo-
rithms. Rather than concerning oneself with how the computation is carried out, we
instead consider a description of the result being computed. For example, consider
writing the factorial function in ML:

let fac x = if (x=0) then 1 else (x * (fac (x-1)));

Here we just state the definition of the function. Now consider implementing the same
function in an imperative style in C:

int fac (int x) {
int result=1;

while (x>0) {
result = result*x;
x = x - 1;

}

return result;
}

Here we concern ourselves with how the actual computation is carried out: we allocate
memory for a new variable, repeatedly change its value, and then return that final value.
In ML we leave the process of allocating and updating memory to the compiler.

The primary benefit of imperative languages is speed. By directly manipulating
memory and relying less on recursion, programs in imperative languages are often able
to perform the same task in less time. But as computers become faster, this advantage
is meaningful for a smaller number of programs. Also, compiler optimizations for
functional languages sometimes produce code which is comparable to that obtained
from imperative languages.

The primary benefits of functional languages are the clarity and small size of code
needed to write an algorithm. Clarity is achieved by freeing the programmer from
the low-level implementation of computation. One is rarely faced with the arduous

2

task that is common when reading and writing code which is written in imperative
languages: namely, keeping track of both the value and meaning of several variables.

Functional languages place no more restrictions on functions than on variables.
One can pass functions to other functions, store them in data structures, or return them
as the result of a function. One can even pass functions with an arbitrary number of
their parameters instantiated.

The notion of passing a function with an arbitrary number of its parameters instan-
tiated is related tocurried notation. As an example, consider the functionplus , which
one normally thinks of as taking a pair and returning a value; i.e. a function with the
signature

plus: (int * int) → int .

However, one can also think of addition as the application of two functions, each of
which takes one argument. This yields the signature

plus: int → (int → int) .

Here, for example, the result of providing 3 toplus is a function which takes an inte-
ger and adds 3 to it. Thus,(plus 3)5 = 8 and(plus 10)5 = 15. This transformation
of a function which takesn arguments to the application ofn functions, each of which
takes one argument, is calledcurrying. It is even possible to applyplus to just one
argument, and pass the result (which is a function) as an argument to another function.
This property allows one to create very robust libraries. For example, consider the
library functionmap in ML. This function has the type signature

map: (α→ β)→ (α list)→ (β list).

It takes two arguments, a functionf fromα toβ, and a list of elements of typeα. It
returns a list of elements of typeβ, which is obtained by applyingf to each element of
the list. Here we useα andβ to represent the fact that the map function is polymorphic,
allowing one to substitute arbitrary types forα andβ.

The above properties make many tasks, such as those involving list manipulation,
relatively easy. As an example, suppose one wanted to increase the value of each
element in a list of integersintlist by 3. One could do this by simply writing

let list’ = List.map (plus 3) intlist ,

where plus is the curried addition function from above. This example is representative
of how algorithms in functional languages are generally written: by the application of
one or more functions to a data structure. This is a level of modularization which is not
possible without higher order functions.

2 The Untypedλ-calculus

2.1 The Language

We now introduce the fundamental definitions of theλ-calculus. We refer the reader to
[1, 8, 3] for a more comprehensive treatment.

3

Let V be a countably infinite set of variables (writtenx, y, z, . . .). The class of
λ-terms consists of words constructed from the following alphabet:

• variables:x, y, z . . .

• lambda abstractor:λ

• parentheses:(,)

• period: .

Definition. The classΛ of λ-terms is the least class satisfying the following:

1. if x is a variable, thenx ∈ Λ,

2. if M,N ∈ Λ, then(MN) ∈ Λ,

3. if M ∈ Λ, then(λx.M) ∈ Λ.

Terms of the form(MN) represent the application of the functionM to the argu-
mentN . Terms of the form(λx.M) are calledλ-abstractions, and denote the function
that mapsx toM . From the above definition, we can see that the following areλ-terms.

x
(xx)
(λy.(xx))
((λy.(xx))(λx.(xx)))

We will drop unnecessary parentheses fromλ-terms by using the following con-
ventions. Application associates to the left, and soMNP stands for((MN)P). We
write λx1x2 . . . xn.M for λx1.(λx2 . . . (λxn.M) . . .)

Application binds stronger thanλ-abstraction, and soλx.MN meansλx.(MN)
and not(λx.M)N . Thus, the right-hand side of aλ-abstraction extends as far to the
right as possible.

The operations which we will perform onλ-terms depend on the distinction be-
tween free and bound variables. Informally, in the termλx.M the variablex is said to
bebound, and the subtermM is called thescopeof the binding. A variable is called
free if it is not bound.

Definition. The set of free variables of aλ-term is defined as follows:

FV (x) = x
FV (λx.M) = FV (M) \ {x}
FV (MN) = FV (M) ∪ FV (N)

Note that a variable may appear both free and bound in a term, such asx in (λx.x)x.
One can think of bound variables as local variables. The name of a bound variable

is not significant, as bothλx.x andλy.y denote the same function. We will henceforth
identify λ-terms which differ only by a renaming of bound variables. Such terms are
calledα-equivalent.

4

Definition. The termsM,N ∈ Λ are said to beα-equivalent, writtenM=αN , if M
andN are equal except possibly for the renaming of bound variables.

Thus,λx.xyz=αλw.wyz but λx.xyz 6=α λx.xwz asy is not bound inλx.xyz.
Another example isλx.xyz 6=α λy.yyz. Here the second term has a bound variable
(the lasty) which occurs free in the first term!

2.2 Substitution

Our primary interest withλ-terms will be computation, which we view as the evalua-
tion of expressions. The first notion of evaluation we consider is that ofβ-reduction.

The termλx.M is an expression for the function which mapsx to the termM .
Herex may occur inM . In the context of programming languages,x is called the
parameterof M . If the functionλx.M is applied to the valueN , then the result isM ,
with all occurrences ofx replaced byN .

Suppose thatf is the addition operation, written in prefix form, so thatf 2 3 eval-
uates to5. Thenλx.fxx is the function which mapsx to x + x, thus the “times two”
function. If we evaluate(λx.fxx)3, we obtainf 3 3, or 6.

We writeM [x := N] for the result of replacing the free variablex by N in the
termM . This is thesubstitutionof N for x in M , and is formally defined below.

Definition. The result of substitutingN for the free occurrences ofx in M , written
M [x := N], is defined as follows.

1. x[x := N] = N

2. y[x := N] = y, if x 6= y

3. (λy.M1)[x := N] = λy.(M1[x := N]), providedx 6= y andy 6∈ FV (N).

4. (M1M2)[x := N] = (M1[x := N])(M2[x := N])

The reason for the provision in (3) is that if we were to make the following substi-
tution blindly:

λx.xyz[y := x] = λx.xxz

we would “gain” a bound variable. But this goes against the spirit of substitution, as
the name of a bound variable should not affect the result of the substitution.

We solve this problem by introducing a new step in the substitution process. Be-
cause a name clash arises when we renamey as a bound variable, we first renamex
as a variable which does not occur inλx.xyz. This new term isα-equivalent to the
original one. Thus, the above substitution can be carried out as follows:

λx.xyz[y := x] =α λk.kyz[y := x] = λk.kxz

5

2.3 β-Reduction

We defineβ-reduction with the idea of substitution and function application in mind.
We call a term of the form(λx.N)P aβ-redexand say that itreducestoN [x := P].

We say that a termM ∈ Λ β-reduces to a termM ′ in one step, writtenM →β M
′, if

M ′ is obtained fromM by reducing a single redex that is a subterm ofM . Formally,
→β is the smallest relation on terms such that

(λx.N)P →β N [x := P]
M →β M

′

MN →β M
′N

N →β N
′

MN →β MN ′
M →β M

′

λx.M →β λx.M
′

Definition. If M ∈ Λ has no subterms of the form(λx.N)P , thenM is said to be in
β-normal form.

Note that a normal form cannot beβ-reduced any further.
We write→∗β for the reflexive transitive closure of→β . Furthermore, we say that

if M →∗β M ′ andM ′ is in normal form, thenM ′ is the result of β-reducing (or
evaluating)M .

Recall our premise that theλ-calculus can be viewed as a prototype for functional
programming languages. We now give examples ofβ-reduction which support this
premise.

Example 2.1 (Identity).The termλx.x is the identity function.

Proof. This claim is only true if(λx.x)M →∗β M for all M ∈ Λ.

(λx.x)M →β x[x := M] = M 2

Example 2.2 (Boolean Values, Conditional).Theλ-termsλx.(λy.x) andλx.(λy.y) cor-
respond to the boolean values true and false, respectively. LetB be a boolean value.
ThenBMN is the conditional, meaning “ifB is true then evaluateM , else evaluate
N .”

Recall thatBMN = (BM)N and means “first evaluate the application ofB to
M ; apply that result toN ”.

Proof. We first show that(λx.(λy.x))MN →∗β M for all termsM andN :

(λx.(λy.x))MN
→β ((λy.x)[x := M])N = (λy.M)N
→β M [y := N] = M

We must also show that(λx.(λy.y))MN →∗β N for all termsM andN .

(λx.(λy.y))MN
→β ((λy.y)[x := M])N = (λy.y)N
→β y[y := N] = N 2

6

2.4 The Simply-Typedλ-Calculus

There are two main reasons for introducing types into a language: efficiency and safety.
An example of efficiency occurs when one declares an array of 1,000 items. How
can the computer know how much room to allocate for each item? If each item is to
be an integer, then one would want 1,000 consecutive words; if each item is to be a
double, then one would want 2,000 consecutive words. However, allocating memory
“on the fly”, or allocating more memory than is necessary, is an inefficient solution.
One declares the type of an array as an aid to the compiler.

Safety is another reason to introduce types. As an example, consider attempting
to add anything other than two numbers. This results in undefined behavior, and so
should not be allowed. A similar situation occurs when the types of parameters given
to a function do not match those the function expects to receive. By providing atype-
checking algorithm, the compiler can ensure that no such errors occur.

We present a type system for theλ-calculus which is known as thesimply-typed
system. This name distinguishes it from more powerful systems, such as polymorphic
ones.

Definition. Let T be a countably infinite set of type variables (writtenα, β, . . .). The
set of type expressions (writtenA,B, . . .) is given by the grammar:

TypesA,B ::= α int bool A→ B

Thus, types are built from type variables via the→ constructor.

Recall thatλx.M is a function which mapsx toM . We recognize this by assigning
λ-terms of this form the typeA → B, wherex is of typeA andM is of typeB. We
introduce a notation to discuss types. The foundation of this notation is anassumption,
which is writtenx : A and read “x is of typeA”.

Definition. A contextis a list of assumptionsx1 : A1, . . . , xn : An, such that no
variable appears more than once. We denote contexts byΓ. Typing judgmentsare
written Γ ` M : A, whereΓ is a context,M is a term andA is a type. Judgments are
read “in the contextΓ,M is of typeA.”

¿From these definitions we are able to maketyping rules, which denote an if-then
relationship between judgments. For example, the rule

x : A,Γ `M : B
Γ ` λx.M : A→ B

is read “if the assumptionx : A and contextΓ makeM of typeB, thenΓ makesλx.M
of typeA→ B.”

The simply-typedλ-calculus introduces a new restriction on function application.
Recall that in the untypedλ-calculus function applications of the formMN can be
done between anyM andN . However, once one takes the consideration of types into
account, such applications are only logical ifM is of typeA→ B andN is of typeA.
That is,M must be of function type andN must be of the same type asM ’s domain.

7

Table 1: Typing rules for the simply-typedλ-calculus

x : A,Γ ` x : A
x : A,Γ `M : B

Γ ` λx.M : A→ B
Γ `M : A→ B Γ ` N : A

Γ `MN : B

The result of this application is a term of typeB. Thus, we have the following judgment
regarding application:

Γ `M : A→ B Γ ` N : A
Γ `MN : B

The complete typing rules for the simply-typedλ-calculus are showing in Table 1.
A type derivationis the derivation of a typing judgment by repeated use of the

typing rules.

Definition. We say that a termM in the simply-typedλ-calculus iswell-typedif there
exists some typing derivation withΓ `M : A as its conclusion for someΓ andA.

The types that we have presented in this system are “implicit”. This means that
terms are not annotated explicitly with their types; types are instead treated as a prop-
erty of the terms, and it is possible for a term to have several types. For example, the
identity function has the typeA→ A for any typeA. One can even considerα→ α to
be themost general typeof this term, and the typesA→ A and(B → C)→ (B → C)
to beinstancesof it. As we will see in Section 3.3, these concepts provide the founda-
tion for type inference algorithms.

We now give examples of terms and their types.

Example 2.3 (The Type ofλx.(λy.x)). Recall from Example 2.2 thatλx.(λy.x) repre-
sents the boolean value true. We wish to ascertain whether or not this term is well-
typed. We first apply the rule for abstractions:

x : A,Γ ` λy.x : B
Γ ` λx.(λy.x) : A→ B

Sinceλx.(λy.x) is an abstraction, it must have the typeA → B for some typesA
andB. But this will only hold if λy.x has typeB under the assumptionsx : A andΓ.
But asλy.x is a function, and thex in λy.x is bound to the outermostλ, the typeB
must in fact beC → A for some typeC.

y : C, x : A,Γ ` x : A
x : A,Γ ` λy.x : C → A

Γ ` λx.(λy.x) : A→ (C → A)

Thus,λy.x has the typeC → A if, under the assumptiony : C, we havex :
A,Γ ` x : A. As all of the subterms ofλx.(λy.x) can be assigned a type, the term is
well-typed. 2

8

Example 2.4 (An Untypable Term).Not all terms are well-typed; an example is the
termxx. Recall that for applicationsMN the termM must have typeA → B while
the termN must have typeA. But forM = N = x, this is impossible, as a variable
may not have more than one type in the same expression.2

2.5 Summary

We can now list three ways in which the untypedλ-calculus relates to functional pro-
gramming:

1. Functions can be passed as arguments to other functions. One example is

(λx.xy)(λz.z)→β xy[x := λz.z] = (λz.z)y →β z[z := y] = y.

2. Functions can be the results of functions or programs. One example is

(λz.z)(λx.xy)→β z[z := λx.xy] = λx.xy.

The result is a function which takes one argument.

3. Functions can be passed (or returned) with some of their arguments already in-
stantiated. For example, theλ-term

(λr.rs)((λxy.xy)z)

passes the functionλxy.xy, with the variablex already mapped toz, to the
functionλr.rs.

3 The Language PPL

3.1 Definition of the Language

We now introduce the small functional language PPL. We denote PPL expressions by
M orN . Their abstract syntax is given by the following grammar:

PPL Terms M,N ::= x n true false λx.M MN

let x = M in N let recx = M in N

() (M1, . . . ,Mn) pijnM

injnM caseM of in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn

We give a brief explanation of these terms. The termx denotes a variable and the
termn denotes an integer constant. The terms true and false are the boolean values.

The termλx.M represents the function that mapsx toM . The termMN denotes
the application of the functionM to the argumentN .

9

The term(let x = M in N) is a binding, definingx to be an abbreviation forM
inside the termN . The term(let recx = M in N) is similar to (let x = M in N),
except it also allowsx to occur recursively inM .

The term() represents the unique 0-tuple. The PPL term(M1, . . . ,Mn) represents
ann-tuple of PPL terms, wheren ≥ 2. The term pijnM is thejth projection of then-
tupleM . The term injnM is a tagged term; it denotes the injection ofM into thejth

component ofn disjoint sets.
(caseM of in1

n x1 ⇒ N1 | . . . | innn xn ⇒ Nn) represents a case distinction on the
tag ofM . If M evaluates to a tagged term inj

n P , then evaluateNj , wherexj is replaced
by P .

We now list the ways in which a variable occurs bound in PPL:

1. x occurs bound in the termλx.M . The scope ofx isM .

2. x occurs bound in the term(let x = M in N). Here the scope ofx isN .

3. x occurs bound in the term(let recx = M in N). Here the scope ofx is both
M andN .

4. In the term

caseM of in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn,

the variablesx1, . . . , xn occur bound in the termsN1, . . . , Nn, respectively.

All other occurrences of variables in PPL terms are free.
We defineα-equivalence and substitution for PPL terms by analogy with theλ-

calculus. We omit the formal definitions here. As before, we identify terms up to
α-equivalence.

3.2 Call-by-Name Reduction

For the evaluation of PPL terms we adopt thecall-by-name (CBN)strategy. The rules
for this evaluation strategy are given in Table 2.

Definition. The PPL termsx, n, true, false,λx.M , (), (M1, . . . ,Mn) and injnM are
in CBN normal form.

Note that a CBN normal form, like aβ-normal form, does not reduce any further.
There are terms, however, which have no reduction but are not normal forms (e.g.M =
pijn true). We say that such terms causerun-time errors, and we writeM →n error.

The difference between CBN andβ-reduction lies in when one reduces. Inβ-
reduction one reduces whenever possible. But in CBN reduction one never reduces
inside an abstraction, injection, let, let rec, tuple, or the right-hand-side of a case. Also,
in the termMN we reduce onlyM , and notN .

This last rule is the reason this semantics is called call-by-name (as opposed to call-
by-value). In passingN as a parameter toλx.M , we substituteN as an unevaluated
term into the body of the function, rather than first ascertaining its value.

10

Table 2: Evaluation rules for PPL

(1) (λx.M)N →n M [x := N]

(2)
M →n M

′

MN →n M
′N

(3) let x = M in N →n N [x := M]

(4) let recx = M in N →n N [x := let recx = M in M]

(5) piin(M1, . . . ,Mn)→n Mi

(6)
M →n M

′

piinM →n piinM
′

(7) (case ininM of in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn)→n Ni[xi := M]

(8)
M →n M

′

caseM of . . . →n caseM ′ of . . .

In the presence of predefined function symbols there will be additional evaluation
rules and normal forms. For instance, if we add a basic function plus we need to add
the following rules:

M →n M
′

plusMN →n plusM ′N
N →n N

′

plusmN →n plusmN ′ plusmn→n m+ n

The meaning of these rules is as follows. Given the expression(plusMN), repeat-
edly reduceM until it is in normal form (an integer). Then reduceN until it is in
normal form (an integer). When both arguments are in normal form, add them.

We also need to add terms of the form(plus) and(plusM) to the definition of CBN
normal form, as they are functions which are both legal and should not be evaluated
further. The situation for other function symbols is analogous.

We use→∗n to represent the reflexive transitive closure of→n. We writeM ⇓ M ′
if M →∗n M ′ andM ′ is a normal form. We writeM ⇓ error if there existsM ′ such
thatM →∗n M ′ andM ′ →n error.

The reduction rules have the following interesting property:

Lemma 3.1. The evaluation rules for PPL aredeterministic. That is, for all PPL terms
M there exists at most oneM ′ such thatM →n M

′.

Proof. The proof is by induction on the structure ofM .

11

SupposeM = x, n, λx.N , true, false,(), (M1, . . . ,Mn), or injn. ThenM is a
normal form and does not reduce any further. The claim follows trivially.

In all other cases, supposeM →n M
′.

If M = NP thenM ′ is determined by the structure ofN . If N is a normal form
thenM can only reduce by rule (1) from Table 2. Thus,M ′ is uniquely determined
by N andP . If N is not a normal form, thenM can only reduce by rule (2). Thus,
M ′ = N ′P , whereN →n N

′. By the induction hypothesis,N ′ is uniquely determined
byN . It follows thatM ′ is uniquely determined as well.

If M = (let x = N in P), thenM can only reduce by rule (3). Thus,M ′ is
uniquely determined. Similarly, ifM = (let recx = N in P) then the only rule that
applies toM is (4). In this caseM ′ is uniquely determined as well.

If M = piinN thenM ′ is determined by the structure ofN . If N is a normal form
thenM can only reduce by rule (5). Thus,M ′ is uniquely determined byN . If N is
not a normal form, thenM can only reduce by rule (6). Thus,M ′ = piinN

′, where
N →n N

′. By the induction hypothesis,N ′ is uniquely determined byN . Thus,M ′

is uniquely determined as well.
If M = (caseN of . . .), thenM ′ is determined by the structure ofN . If N is a

normal form thenM can only reduce by rule (7). Thus,M ′ is uniquely determined by
N . If N is not a normal form, thenM can only reduce by rule (8). Thus,M →n M

′,
whereM ′ = (caseN ′ of . . .). By the induction hypothesis,N ′ is uniquely determined
byN . Thus,M ′ is uniquely determined as well. 2

It follows from the lemma and the above remarks that for any termM , there exists
at most oneM ′ ∈ (Terms∪ error) such thatM ⇓M ′.

3.3 Types In PPL

We introduce a type system for PPL which is analogous to the one defined for the
simply-typedλ-calculus in Section 2.4.

Definition. Let T be a countably infinite set oftype variables(writtenα, β, . . .). The
set of type expressions for PPL is given by the grammar:

A,B ::= α int bool A→ B A1 ∗ . . . ∗An 1 A1 + . . .+An 0,

wheren ≥ 2.

The typeA → B is the type of functions which map values of typeA to values
of typeB. The typeA1 ∗ . . . ∗ An is the product of the typesA1 throughAn. Its
elements aren-tuples of the form(M1, . . . ,Mn), where eachMi is of typeAi. The
typeA1 + . . .+ An is the disjoint union of the typesA1 throughAn. Its elements are
tagged terms of the form injnM , whereM is of typeAj . The type0 is the empty type.
The type1 is the unit type; it has the unique element().

The typing rules for simply-typed PPL are given in Table 3.
Note that some PPL expressions are well-typed in the empty context. For example,

true is always of type bool, and similarly for false. As with the simply-typedλ-calculus,
typing is implicit. This translates to programmers not needing to state the type of a
variable or function; he need only use it consistently.

12

Table 3: The typing rules for PPL

x : A,Γ ` x : A

n ∈ IN
Γ ` n : int

Γ ` true : bool

Γ ` false: bool

x : A,Γ `M : B
Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A
Γ `MN : B

Γ `M : A x : A,Γ ` N : B
Γ ` let x = M in N : B

x : A,Γ `M : A x : A,Γ ` N : B
Γ ` let recx = M in N : B

Γ `M : A1 ∗ . . . ∗An
Γ ` piinM : Ai

Γ ` () : 1

Γ `M1 : A1 . . . Γ `Mn : An
Γ ` (M1, . . . ,Mn) : A1 ∗ . . . ∗An

Γ `M : Ai
Γ ` ininM : A1 + . . .+An

Γ `M : A1 + . . .+An xi : Ai,Γ ` Ni : C (for 1 ≤ i ≤ n)
Γ ` caseM of in1

n x1 ⇒ N1 | . . . | innn xn ⇒ Nn : C

13

In the presence of predefined function symbols, there will be additional typing rules
giving the type of each such symbol. For example,

Γ ` plus : int→ int→ int

is the typing rule for plus.

3.4 The polymorphic type system

We now extend the type system with a form of polymorphism known as ML-polymor-
phism. The polymorphic type system rests on the notion oftype schemas, which are
expressions of the form

∀α1 . . .∀αn.A.

Hereα1, . . . , αn are type variables,n ≥ 0, andA is a type expression. Notice that
quantifiers can occur only at the top level in a type schema; there are no quantifiers
insideA. The type variablesα1, . . . , αn areboundin the above type schema, and we
identify type schemas up to the renaming of bound variables. We sometimes denote
type schemas byS, T,

We writeA[α1 := A1, . . . , αn := An] for the result of simultaneously substituting
the type expressionsA1, . . . , An for the type variablesα1, . . . , αn, respectively, in the
type expressionA. We say that the type expressionB is ageneric instanceof the type
schema∀α1 . . .∀αn.A if B = A[α1 := A1, . . . , αn := An] for someA1, . . . , An.

Before stating the polymorphic typing rules, we first generalize the definition of a
contextΓ. A polymorphic contextis a listx1 : S1, . . . , xn : Sn of pairs of a variable
and a type schema. The old definition of a context is a special case of this newer one,
since a simple type (in the sense of the simply-typed system) is just a type schema
with zero quantifiers. Apolymorphic typing judgmentis an expression of the form
Γ ` M : A, whereΓ is a polymorphic context,M is a PPL term, andA is a type
expression. It is important to note that quantifiers may occur inΓ, but not inA.

The rules for the polymorphic type system are identical to those for the simple type
system, except for the rules for variables, “let”, and “let rec”. These modified rules are
shown in Table 4. In the rules for “let” and “let rec”,α1, . . . , αn are type variables that
are not free inΓ.

This type of polymorphism was first described for the programming language ML
by Milner and Damas [2]. An important feature of this type system is that it isdecid-
able. That is, a compiler can decide whether or not a given program is typable in this
system. We describe such an algorithm for PPL programs in Section 4.

3.5 Type Soundness

We now formally state the relationship between PPL’s type system and the CBN re-
duction strategy. Before proceeding, we first prove a property about the substitution of
PPL terms.

14

Table 4: The polymorphic typing rules for PPL

(1)
x : S,Γ ` x : A

,where A is a generic instance of S

(2)
Γ `M : A x : ∀α1 . . .∀αn.A,Γ ` N : B

Γ ` let x = M in N : B
,

whereα1, . . . , αn
not free inΓ

(3)
x : A,Γ `M : A x : ∀α1 . . .∀αn.A,Γ ` N : B

Γ ` let recx = M in N : B
,

whereα1, . . . , αn
not free inΓ

Lemma 3.2 (Substitution). If x : ∀α1 . . .∀αn.B, Γ ` N : A andΓ ` P : B, where
α1, . . . , αn 6∈ FV (Γ), thenΓ ` N [x := P] : A.

Proof. The proof is by induction onN .
Suppose thatN = x. We have assumed thatx : ∀α1 . . .∀αn.B,Γ ` x : A.

From rule (1) in Table 4, it follows thatA is a generic instance of∀α1 . . . αn.B. Thus,
A = B[α1 := A1, . . . , αn := An] for some type expressionsA1, . . . , An.

We have also assumed thatΓ ` P : B. Sinceα1, . . . , αn are not free inΓ, we
can replace all free occurences ofα1, . . . , αn by the type expressionsA1, . . . , An
in the derivation ofΓ ` P : B. The result is a derivation ofΓ ` P : A. Thus,
Γ ` x[x := P] : A as desired.

Suppose thatN = n, true, false, () or y, wherey is a variable andy 6= x. Then
x 6∈ FV (N), and soN = N [x := P]. The claim follows.

Suppose thatN = λy.M andN : ∀α1 . . .∀αn.B,Γ ` x : A. Without loss
of generality,y 6= x. From Table 3 we know thatA = C → D and y : C, x :
∀α1 . . .∀αn.B,Γ ` M : D for some type expressionsC andD. We want to show
that Γ ` (λy.M)[x := P] : C → D. But (λy.M)[x := P] = λy.(M [x := P]),
and we know thaty : C,Γ ` M [x := P] : D from the induction hypothesis. Thus,
Γ ` (λy.M)[x := P] : C → D, as desired. The remaining cases are similar to this.
2

Lemma 3.3 (Subject Reduction).If Γ `M : A andM →n M
′, thenΓ `M ′ : A.

Proof. The proof is by induction on the derivation ofM →n M
′. There is a case for

each rule in Table 2.
Suppose thatM = (λx.N)P andM ′ = N [x := P]. By assumption,Γ `

(λx.N)P : A. From the typing rules in Table 3, it follows thatx : B,Γ ` N : A
andΓ ` P : B for some type expressionB. It follows from Lemma 3.2 thatΓ `
N [x := P] : A.

Suppose thatM = NP andM ′ = N ′P , whereN →n N ′. From the rules in
Table 3, we can tell thatΓ ` N : B → A andΓ ` P : B for some type expression
B. From the induction hypothesis we know thatΓ ` N ′ : B → A. It follows that
Γ `M ′ : A.

15

Suppose thatM = (let x = P in N) andM ′ = N [x := P]. By assumption,
Γ ` (let x = P in N) : A. From the polymorphic typing rules in Table 4, we know
thatΓ ` P : B andx : ∀α1 . . .∀αn.B,Γ ` N : A, for someα1, . . . , αn not free inΓ.
It follows from Lemma 3.2 thatΓ ` N [x := P] : A.

Suppose thatM = (let recx = P in N) andM ′ = N [x := (let recx = P in P)].
By assumption,Γ ` (let recx = P in N) : A. From the typing rules in Table 4, we can
tell thatx : B,Γ ` P : B andx : ∀α1 . . .∀αn.B,Γ ` N : A, for someα1, . . . , αn not
free inΓ. Also from Table 4, we know thatΓ ` (let recx = P in P) : B. It follows
from Lemma 3.2 thatΓ ` N [x := (let recx = P in P)] : A.

The remaining cases are similar to the ones proved above.2

Lemma 3.4 (Correctness).If `M : A thenM 6→n error.

Proof. The proof is by induction onM .
Suppose that̀ M : A andM is not a normal form. We must show thatM →n M

′

for someM ′. SinceM is not a normal form, we only need to consider the cases where
M is an application, a “let” or “let rec” expression, a projection or a case distinction.

Suppose thatM = NP . By assumption,̀ M : A. From the typing rules in
Table 3 we know that̀ N : B → A and` P : B for some type expressionB. If N
is not a normal form, we haveN →n N

′ for someN ′ by the induction hypothesis. In
this case,M reduces by rule (2) in Table 2. IfN is a normal form, however, it follows
from Table 3 thatN must be a variable or aλ-abstraction. But sincè N : B → A in
the empty context,N cannot be a variable. Thus,N = λx.Q for some variablex and
termQ. It follows thatM →n Q[x := P].

Suppose thatM = (let x = P in N). ThenM can be reduced directly from rule 3
in Table 2. The case forM = (let recx = P in N) is similar to this.

Suppose thatM = piinN . By assumption,̀ M : A. If N is not a normal form, we
haveN →n N

′ for someN ′ by the induction hypothesis. In this case,M reduces by
rule (6) in Table 2. IfN is a normal form, however, then from the rules in Table 3 we
know that` N : A1 ∗ . . . ∗ An andAi = A. Table 3 also tells us that the only normal
forms of typeA1 ∗ . . . ∗An are variables andn-tuples. But sincè N : A1 ∗ . . . ∗An
in the empty context,N cannot be a variable. Thus,N = (N1, . . . , Nn). It follows
thatM →n Ni.

Suppose thatM = (caseN of in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn). Recall that̀

M : A. From the rules in Table 3 we know that` N : A1 + . . . + An. If N is not
a normal form, we haveN →n N

′ for someN ′ by the induction hypothesis. In this
case,M reduces by rule (8) in Table 2. IfN is a normal form, however, then Table 3
tells us thatN must be a variable or injection. But since` N : A1 + . . . + An in the
empty context,N cannot be a variable. Thus,N = injn P for somej. It follows that
M →n Ni[xi := M]. 2

Proposition 3.5 (Type Soundness).If `M : A thenM 6→∗c error.

Proof. Suppose that̀ M : A andM →∗c M ′. By repeated application of Lemma 3.3,
we know that̀ M ′ : A. From Lemma 3.4 we haveM ′ 6→n error. ThereforeM 6→∗c
error. 2

16

4 Type Inference

Recall that PPL is both a polymorphic and a functional language. In Section 1 we
demonstrated that this combination allows one to create very robust higher-order func-
tions. However, these functions raise a problem of their own: explicitly annotating
their types is an error-prone endeavor.

For example, consider theexists2 function in ML. This function takes a lista of
typeα and a listb of typeβ, as well as a function of typeα→ β → bool. The function
returns true iff ai bi = true for anyai andbi, whereai is theith element of lista. It
returns false otherwise. The type signature of this function is

(α→ β → bool)→ α list → β list → bool .

Now consider writing a functionxorexists2 which, given two listsa and b,
and two functionsf1 andf2, returns true if(exists2 f a b) holds for exactly one of
f = f1 andf = f2. The code for this function is very succinct:

let xorexists2 f1 f2 a b = xor (exists2 f1 a b)
(exists2 f2 a b),

wherexor is the exclusive or function. But this function generates the following
signature:

(α→ β → bool)→ (α→ β → bool)→ α list → β list → bool

The signature for this function is as long as (and more opaque than) the function itself!
Writing such signatures is something which one would like to avoid if possible.

In Section 2.4 we discussed the importance of a compiler knowing the type signa-
ture of functions. We have just shown, however, that it is not always desirable to have
the programmer explicitly declare the signature of her functions. The ideal situation
appears to involve the compilerinferring the types of the variables and functions in a
program. This would give us both the safety which type-checking algorithms provide
as well as free us from writing extensive annotations. There is also the hope that the
compiler can infer more general types than the programmer can.

4.1 Unification

We begin our discussion of polymorphic type inference with a few definitions.

Definition. A type substitutionis a functionσ from variables to type expressions. If
A is a type expression, then we writeσ(A) for the result of applyingσ to each type
variable inA. If σ andτ are type substitutions, we define theircompositionτ ◦ σ to
be the type substitution which maps each type variableα to τ(σ(α)). A unifier of two
type expressionsA andB is a substitutionσ such thatσ(A) = σ(B).

Here are some examples of unifiers:

1. LetA = α → β andB = β → γ. Then a unifier forA andB is σ = {α 7→
α, β 7→ α, γ 7→ α}. Verify thatσ(A) = σ(B) = α→ α.

17

2. Let A = (β ∗ β) → β andB = α → (γ ∗ γ). Then a unifier forA and
B is σ = {α 7→ ((γ ∗ γ) ∗ (γ ∗ γ)), β 7→ (γ ∗ γ), γ 7→ γ}. Verify that
σ(A) = σ(B) = ((γ ∗ γ) ∗ (γ ∗ γ))→ (γ ∗ γ).

3. LetA = α andB = α → β. ThenA andB do not have a unifier. A proof
of this can be done by contradiction. Supposeσ is a unifier ofA andB. Then
σ(α) = C andσ(β) = D for some type expressionsC andD. But σ(A) = C
while σ(B) = C → D. Thus,σ(A) 6= σ(B).

4. LetA = α ∗ β andB = γ → δ. ThenA andB do not have a unifier. A
proof of this can be done by contradiction. Supposeσ is a unifier ofA andB.
Thenσ(α) = C, σ(β) = D, σ(γ) = E andσ(δ) = F for some type expressions
C,D,E andF . Butσ(A) = C∗D whileσ(B) = E → F . Thus,σ(A) 6= σ(B).

As the above examples show, not all terms can be unified.
If σ andσ′ are type substitutions, then we say thatσ is more generalthanσ′ if there

exists a substitutionτ such thatσ′ = τ ◦ σ. A unifier σ of A andB is called amost
general unifierof A andB if it is more general than any other unifier ofA andB.

An interesting property of most general unifiers is that if two type expression have
any unifier, then they also have a most general one. Furthermore, the most general
unifier can be computed efficiently by a unification algorithm which was originally
published by Robinson [9].

4.2 Polymorphic Type Inference

Let S be a type schema. We writeσ(S) for the result of applyingσ to eachfree type
variable inS. Here we rename bound variables as necessary to avoid name clashes, as
was done forλ-terms in Section 2.2. IfΓ is a context, we writeσ(Γ) for the application
of σ to each type schema inΓ.

The behavior of the type inference algorithm is as follows: when given a PPL
programM , it returns the most general typeA such thatM : A is well-typed. If no
such typeA exists, the algorithm fails.

More generally, we provide an algorithm for the following problem: given a typing
judgmentΓ ` M : A, find a substitutionσ such thatσ(Γ) ` M : σ(A) is well-typed
according to the polymorphic typing rules. If such a substitution exists, return the most
general one. Otherwise, fail. This algorithm for polymorphic type inference was first
discovered by Milner [7] and was later refined by Damas and Milner [2].

The algorithm works by recursion on the structure of the termM . In each case,
the algorithm corresponds to a “bottom-up” reading of the typing rules in Tables 3
and 4. Given a typing judgmentΓ ` M : A, we find the substitutionσ as follows.
Here we list the cases forM = true, false,n, x, λx.N , NP , (let x = N in P) and
(let recx = N in P). The other cases proceed by similar reasoning. If any of the
mentioned unifiers do not exist, the algorithm fails.

1. If M = true or false, then letσ be the most general unifier ofA and bool.

2. If M = n, n ∈ IN, then letσ be the most general unifier ofA and int.

18

3. If M = x, find the assumptionx : S in Γ. LetB be a fresh generic instance of
the schemaS, and letσ be the most general unifier ofA andB.

4. If M = λx.N , let α andβ be fresh type variables. Applying the algorithm
recursively, find the most general substitutionτ such thatτ makesΓ, x : α `
N : β well-typed. Letτ ′ be the most general unifier ofA andα → β. Let
σ = τ ′ ◦ τ .

5. If M = NP , let β be a fresh type variable. Applying the algorithm recursively,
find the most general substitutionτ such thatτ makesΓ ` N : β → A well-
typed. LetΓ′ = τ(Γ) andB′ = τ(β). Let τ ′ be the most general substitution
that makesΓ′ ` P : B′ well-typed. Letσ = τ ′ ◦ τ .

6. If M = (let x = N in P), let γ be a fresh type variable. Applying the algorithm
recursively, find the most general substitutionτ such thatτ makesΓ ` N : γ
well-typed. LetΓ′ = τ(Γ), A′ = τ(A), C ′ = τ(γ) and letβ1, . . . , βn be
the type variables which are free inC ′ but not inΓ′. Let τ ′ be the most general
substitution that makesx : ∀β1 . . . βn.C

′,Γ′ ` P : A′ well-typed. Letσ = τ ′◦τ .

7. If M = (let recx = N in P), let γ be a fresh type variable. Applying the
algorithm recursively, find the most general substitutionτ such thatτ makes
x : γ,Γ ` N : γ well-typed. LetΓ′ = τ(Γ), A′ = τ(A), C ′ = τ(γ) and let
β1, . . . , βn be the type variables which are free inC ′ but not inΓ′. Let τ ′ be the
most general substitution that makesx : ∀β1 . . . βn.C

′,Γ′ ` P : A′ well-typed.
Let σ = τ ′ ◦ τ .

5 Abstract Machine Interpretation

5.1 Definition of the Abstract Machine

We now discuss a method of implementing the language PPL. As a functional lan-
guage, we wish to be able to pass functions as parameters to other functions with some
(possibly none) of their parameters instantiated. The syntax of an earlier example of
β-reduction leads us to an idea of how to accomplish this:

(λr.rs)((λxy.xy)z)→β rs[r := (λxy.xy)z] = ((λxy.xy)z)s.

That is, when given the functionλr.rswe evaluate the termrswhile also keeping track
of what its free variables map to.

Our implementation of PPL is based on the above idea. But rather than directly
keep track of what the variables map to, we instead use a level of indirection, and
keep a list of pointers (addresses) to what the variables map to. We first describe the
implementation in terms of an abstract machine, in the style of Krivine [5].

Definition. LetA be a countable set of addresses (writtena1, a2, . . .). A term closure
is a pair{M,σ}, whereM is a PPL term,σ is a partial function from variables toA,
andFV (M) ⊆ dom(σ). A match closureis a pair{(in1

n x1 ⇒ N1 | . . . | innn xn ⇒
Nn), σ} with analogous definitions and provisions forσ.

19

A heap is a partial function from addresses to closures. Astack is a list whose
elements are addresses, integers or labels.

A stateof the abstract machine is a triple〈{M,σ}, h, κ〉, where{M,σ} is a closure,
h is a heap andκ is a stack.

We write nil for the empty stack andt :: κ for the stack with topmost elementt and
remaining elementsκ. We writeσ(x 7→ a) for the partial function which is identical
to σ except that it also mapsx to a. We use a similar notation for heaps and write|κ|
for the size of the stackκ.

The transition relation of the abstract machine is denoted by→m. We write

〈{M,σ}, h, κ〉 →m 〈{M ′, σ′}, h′, κ′〉

if the abstract machine can go from the state〈{M,σ}, h, κ〉 to the state〈{M ′, σ′}, h′, κ′〉
in a single step.

We write 〈{M,σ}, h, κ〉 →m halt(s) when the abstract machine halts with result
s. The possible results are:

s ::= n true false “fn” “()” “n-tuple” “inj/n” ,

wheren andj are integers.
Table 5 contains the list of the abstract machine rules for all PPL terms. Here we

explain the rules forλx.M ,MN andx.
The rules for evaluating aλ-abstractionλx.M are:

〈{λx.M, σ}, h, a :: k〉 →m 〈{M,σ(x 7→ a)}, h, κ〉.
〈{λx.M, σ}, h, nil〉 →m halt(“fn”).

In order to evaluateλx.M , the machine pops the address for a closure from the stack
and evaluatesM underσ plus the additional binding(x 7→ a). Herea is the address of
x’s closure. If the stack is empty, however, the program halts. In this case the result of
the program is a function. Thus, abstractions can be thought of as pops from the stack.

The rules for evaluating an applicationMN are:

〈{MN,σ}, h, κ〉 →m 〈{M,σ}, h(a 7→ {N,σ}), a :: κ〉, wherea is fresh.
〈{Mx, σ}, h, κ〉 →m 〈{M,σ}, h, a :: κ〉, whereσ(x) = a.

Recall that we are using the call-by-name reduction strategy. The abstract machine
implements this by not evaluatingN before the function call. SinceN may be eval-
uated later, however, we must save the mapping of its variables. We accomplish this
by building a closure forN on the heap and pushing its address onto the stack. Thus,
applications can be thought of as pushes onto the stack. In the case where the argument
is a variablex, we use an optimization: instead of building a new closure forx, we use
the already existing closureσ(x).

The rule for evaluating a variable is:

〈{x, σ}, h, κ〉 →m 〈{M, τ}, h, κ〉, whereσ(x) = a and h(a) = {M, τ}.

Variables in PPL only have meaning in the context of a closure. Evaluating a vari-
able can be thought of as a jump to its closure.

20

Table 5: Abstract machine rules for PPL

• 〈{x, σ}, h, κ〉 →m 〈{M, τ}, h, κ〉, whereσ(x) = a, andh(a) = {M, τ}.

• 〈{Mx, σ}, h, κ〉 →m 〈{M,σ}, h, a :: κ〉, whereσ(x) = a.

• 〈{MN,σ}, h, κ〉 →m 〈{M,σ}, h(a 7→ {N,σ}), a :: κ〉, whereN is not a
variable anda is fresh.

• 〈{λx.M, σ}, h, a :: κ〉 →m 〈{M,σ(x 7→ a)}, h, κ〉.

• 〈{λx.M, σ}, h, nil〉 →m halt(“fn”).

• 〈{let x = M in N, σ}, h, κ〉 →m 〈{N,σ(x 7→ a)}, h(a 7→ {M,σ}), κ〉, where
a is fresh.

• 〈{let recx = M in N,σ}, h, κ〉 →m 〈{N,σ(x 7→ a)}, h(a 7→ {M,σ(x 7→
a)}), κ〉, wherea is fresh.

• 〈{n, σ}, h, nil〉 →m halt(n).

• 〈{true, σ}, h, nil〉 →m halt(true).

• 〈{false, σ}, h, nil〉 →m halt(false).

• 〈{(), σ}, h, nil〉 →m halt(“()”).

• 〈{(M1, . . . ,Mn), σ}, h, nil〉 →m halt(“n-tuple”).

• 〈{(M1, . . . ,Mn), σ}, h, j :: κ〉 →m 〈{Mj , σ}, h, κ〉, if 1 ≤ j ≤ n.

• 〈{pijnM,σ}, h, κ〉 →m 〈{M,σ}, h, j :: κ〉.

• 〈{injnM,σ}, h, nil〉 →m halt(“inj/n”).

• 〈{injnM,σ}, h, a :: κ〉 →m 〈{λxj .Nj , τ}, h(b 7→ {M,σ}), b :: κ〉, where
h(a) = {in1

n x1 ⇒ N1 | . . . | innn xn ⇒ Nn, τ} andb is fresh.

• 〈{caseM of in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn, σ}, h, κ〉 →m 〈{M,σ}, h(a 7→

{in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn, σ}), a :: κ〉, wherea is fresh.

21

Table 6: Abstract machine rules for “plus”

1. 〈{plus, σ}, h, κ〉 →m halt(“fn”) , where|κ| < 2.

2. 〈{plus, σ}, h, a :: b :: κ〉 →m 〈{M, τ}, h, plus1 :: b :: κ〉 , whereh(a) =
{M, τ}.

3. 〈{m,σ}, h, plus1 :: b :: κ〉 →m 〈{N, τ}, h, plus2 :: m :: κ〉 , whereh(b) =
{N, τ}.

4. 〈{n, σ}, h, plus2 :: m :: κ〉 →m 〈{m+ n, σ}, h, κ〉.

In addition to the rules shown in Table 5, there are also rules for each basic function
symbol; a list of all basic function symbols can be found in Section 7. We give the rules
for “plus” in Table 6.

Rule 1 allows “plus” and “plusM ” to be legal PPL programs. Both of these ex-
pression are functions and cannot be evaluated further.

One need not pass a number to “plus”; one can also pass a term which evaluates to
a number. Rule 2 states that if{plus, σ} is to be evaluated with the addressesa andb as
the topmost elements of the stack, the machine popsa from the stack, pushes the label
“plus1” onto it, and evaluates the closure whicha points to. Let the result of evaluating
M bem. At this point Rule 3 applies, and the machine pops the label “plus1” and
the addressb from the stack and pushesm and the label “plus2” onto it. The machine
then evaluates the closure whichb points to. Let the result of evaluatingN ben. At
this point Rule 4 applies. The machine then pops two elements from the stack and
computesm+ n.

5.2 Properties of the Abstract Machine

The transition rules for the abstract machine given in Table 5 aredeterministic. That
is, for each state there is at most one successor or “halt” state.

We write 〈{M,σ}, h, κ〉 →m error when〈{M,σ}, h, κ〉 cannot legally halt or
move to another state. We write→∗m for the reflexive transitive closure of→m.

Examples of termsM for which 〈{M,σ}, h, κ〉 →∗m error areM = pi12 false and
M = 5 true. The reader should verify that these terms result in an error, and also
that they are not well-typed. In fact, we can state the relationship between the abstract
machine and CBN-reduction more generally as follows:

Proposition 5.1. LetM be a closed PPL program, and letσ andh be arbitrary. Then

1. 〈{M,σ}, h, nil〉 →∗m halt(n) iff M →∗c n.

2. 〈{M,σ}, h, nil〉 →∗m halt(true) iff M →∗c true.

3. 〈{M,σ}, h, nil〉 →∗m halt(false) iff M →∗c false.

22

4. 〈{M,σ}, h, nil〉 →∗m halt(“fn”) iff M →∗c λx.N , for someN (or, in the pres-
ence of basic functions,M →∗c M ′ for some other normal formM ′ of function
type, such as (plusN)).

5. 〈{M,σ}, h, nil〉 →∗m halt(“()”) iff M →∗c ().

6. 〈{M,σ}, h, nil〉 →∗m halt(“n-tuple”) iff M →∗c (N1, . . . , Nn) for someN1, . . . , Nn.

7. 〈{M,σ}, h, nil〉 →∗m halt(“inj/n”) iff M →∗c injnN , for somej, n andN .

8. 〈{M,σ}, h, nil〉 →∗m error iff M →∗c error.

Corollary 5.2. If Γ `M : A then〈{M,σ}, h, nil〉 6→∗m error.

Proof. From Proposition 3.5 we know thatΓ ` M : A impliesM 6→∗c error. From
Proposition 5.1 we know that〈{M,σ}, h, nil〉 →∗m error if and only ifM →∗c error.
Thus,〈{M,σ}, h, κ〉 6→∗m error. 2

6 A Compiler for PPL

6.1 An Idealized Assembly Language

In this section we describe an idealized assembly language which will be the target
language of the compiler. Its chief differences to actual assembly languages are that we
assume an infinite number of registers, and that we have a built-in opcode for dynamic
memory allocation. (This is usually realized by an operating system call). We denote
registers byV,C, r1, r2, Each register can hold an integer or a pointer. There is a
special registerSS which holds the current stack size.

Memory locations can also be denoted by symboliclabels, which we denote by
l1, l2, An l-value(assignable value) is either a register or a memory location[r, n]
specified by a registerr and an integer offsetn. The expression[r, n] refers to the
memory locationn words after that pointed to by the registerr. A symbolic valueis
either an l-value or aliteral value. A literal value is either an integer constant, written
#n, or a labell.

The assembly language has the following opcodes. Herev ranges over values,lv
over l-values, ands ranges over results (as defined for the abstract machine above).

23

Opcode Meaning
JUMPv Jump to addressv
EXIT s Exit and print strings
EXITINT v Exit with integer resultv
EXITBOOL v Exit with boolean result false (v = 0) or true (v 6= 0).
LOAD lv, v Store the valuev in locationlv
POPlv Pop a value from the stack and store it inlv
PUSHv Push the valuev onto the stack
ALLOC lv, v Allocatev words of memory and store a pointer to the first one inlv
CMPv1, v2 Compare the two values, and remember the result
BE v If CMP results in equal, jump to locationv
BG v If CMP results in greater than, jump to locationv
BL v If CMP results in less than, jump to locationv
BNE v If CMP results in not equal, jump to locationv
BGEv If CMP results in greater than or equal jump to locationv
BLE v If CMP results in less than or equal to, jump to locationv

There are also opcodes to calculate basic functions, such asADD lv, v (addv to lv)
andMULT lv, v (multiply lv by v).

6.2 The Translation of PPL Terms

We now explain how PPL terms are represented in the assembly language. An address
is represented as a pointer, and integers are represented as themselves. Boolean values
are also represented as integers, where false= 0 and true= 1. The heap is represented
as allocated memory, and the stack of the abstract machine is represented by the stack
in the assembly language. A PPL term is represented as assembly code.

A closure{M,σ} (whereFV (M) = x1, . . . , xk) is represented by a data structure
that occupiesk+ 1 words of memory. At offset0 is a pointer to the code forM , and at
offsets1 throughk are pointers to the values forx1, . . . , xk, respectively.

A match closure{(in1
n x1 ⇒ N1 | . . . | innn xn ⇒ Nn), σ} (where the free vari-

ables of the matching arex1, . . . , xk) is represented as a data structure that occupies
k + n words of memory. At offsets0 through(n − 1) are pointers to the code for
λxi.Ni, where1 ≤ i ≤ n. At offsetsn through(n+ k − 1) are pointers to the values
for x1, . . . , xk, respectively.

A term closure is invoked by putting a pointer to the closure into the special register
C, and then jumping to the address at offset0. Similarly, thejth branch of a match
closure is invoked by putting a pointer to the match closure intoC and then jumping to
the address at offsetj − 1.

If an integer or a boolean value has been computed, the convention is to put the
value in the special registerV and then jump to the address on top of the stack. If the
stack is empty, thenV is the final result of the program.

The translation of a PPL termM is defined relative to asymbol tables, which is
a function that maps the free variables ofM to symbolic values. The notation[[M]]s

24

means “the assembly code for the PPL expressionM , where the value of each free
variablex is found ins(x).”

The definition of[[M]]s for all PPL termsM is given in the Appendix. Compare
these definitions with the abstract machine rules for PPL terms given in Table 5. Here
we explain the definition of[[λx.M]]s.

[[λx.M]]s =

CMP SS,#0
BG l
EXIT “fn”

l : POP r
[[M]]s(x7→r)

wherel is a new label andr is a new register.

Recall that if the stack is empty thenλx.M is the result of the program, and the
program returns “fn”. If the stack is not empty, however, the machine pops the address
of a closure from the stack and evaluatesM under the current symbol table plus the
mapping ofx to the address just popped.

Note that all assembly code consists of a number of labeled segments, each of
which ends in aJUMP or anEXIT.

The code for the basic functions is more complex than that of the basic PPL terms.
We give the assembly code for plus in Table 7. Its relation to the abstract machine rules
is as follows.

The code for “plus” checks to see if there are less than two elements on the stack;
if so, it halts with the result “fn”. Thus, “plus” tests if rule 1 from Table 6 applies.

If rule 1 does not apply then rule 2 does; rule 2 is realized at the label plus0. Here
the machine pops the address of the closure for the first argument to the registerC. It
then pushes the label plus1 onto the stack and invokes the closure pointed to byC. The
label plus1 functions as the return address of a subroutine call; the machine will jump
to the label plus1 after it is done evaluating the first closure. By convention, the value
which the closure evaluates to is now stored in the registerV .

Now the machine pops the address of the closure for the second argument to plus to
the registerC, and saves the value ofV and the return address plus2 on the stack. Then
it invokes the closure atC. The reader should verify that this behavior corresponds to
Rule 3.

When the second closure has been evaluated, the value of the second argument is in
the registerV , and the value of the first argument is on top of the stack. The code pops
the topmost element from the stack, adds the two arguments, and puts the result inV .
This behavior corresponds to Rule 4. Finally, the code follows the standard convention
for integer results by jumping to the return address on top of the stack, or halting if the
stack is empty.

25

Table 7: The assembly code for plus

[[plus]]s =

CMP SS,#2
BGE plus0
EXIT “fn”

plus0 : POP C
PUSH plus1
JUMP [C, 0]

plus1 : POP C
PUSH V
PUSH plus2
JUMP [C, 0]

plus2 : POP A
ADD V,A
CMP SS,#1
BGE plus3
EXITINT V

plus3 : POP r
JUMP r

7 A Guide to the Implementation

7.1 Introduction

A prototypical implementation of PPL is available on the world-wide web at [6]. It
is written in Objective Caml. The main component of the implementation is the ex-
ecutable programppl , which reads a PPL program and outputs compiled pseudo as-
sembly code. For reasons of portability, the “assembly code” generated byppl is
actually realized as a set of pre-processor macros in the C language; thus, the output of
ppl can be compiled by any C-compiler on the target machine.

The concrete syntax for PPL is slightly different than the syntax introduced in the
paper. For example, we writepi1/2 instead ofpi 1

2, as sub- and superscripts are
not supported in ASCII. Our implementation reads\ asλ, thus \x.x is the iden-
tity function. Our implementation also supports some syntactic sugar. For example,
\x y z.M is interpreted as\x.(\y.(\z.M)) . One can also writelet fun x
y z = M instead oflet fun = \x.\y.\z.M . Both of these expressions repre-
sent the function which takesx, y andz as variables and maps them to the termM .

Our implementation is also lenient with match statements in case distinctions. We
allow cases to occur in an arbitrary order, with some cases duplicated or missing. In
such cases our compiler issues a warning, and if a missing case is encountered at run-
time, the program exits with an error message. We have also added several basic func-
tions to the language. We list them together with their type signatures in Table 8.

26

Table 8: The Basic Functions of PPL

Function Type Signature
plus int→ int→ int
minus int→ int→ int
mult int→ int→ int
divide int→ int→ int
mod int→ int→ int
greater int→ int→ bool
geq int→ int→ bool
less int→ int→ bool
leq int→ int→ bool
equal int→ int→ bool
neq int→ int→ bool
and bool→ bool→ bool
or bool→ bool→ bool
not bool→ bool
if ∀α.bool→ α→ α→ α

The implementation of “and” and “or” arelazy- the second argument is only eval-
uated if necessary. Similarly, in the term “ifM N Q”, only one ofN orQ is evaluated.
The other basic functions evaluate all of their arguments.

7.2 User Manual

We now present information necessary to use our PPL compiler. There are several
flags which affect the compiler’s behavior, and their behavior is summarized in Ta-
ble 9. The default behavior of the compiler is realized by typingppl filename ,
wherefilename is a file which contains a PPL program. The compiler will read
the program, write its most general type to the terminal, and write its assembly code
translation to a file.

The--parse flag will cause the compiler to read and type-check a PPL program
but not compile it. The--reduce and --step flags cause the compiler to apply
CBN reduction to the input term. In--reduce mode, the final normal form is printed,
whereas in--step mode, the entire reduction sequence is printed, one term per line.
The--typeinfo mode flag alters the amount of type information that is displayed
to the terminal.mode must be one ofnone , all , top , let or an integer nesting
depthn. The compiler then gives type information on, respectively, no variables, all
variables, all variables defined on the top-level, variables defined only by let and let-
rec constructs, and variables defined up to a depth ofn. The--untyped flag causes
the compiler to not type-check the PPL program. The--optimize flag will cause
the compiler toβ-reduce certain redexes before compilation, yielding more efficient
assembly code.

27

Table 9: Command line options for the compiler

Flag Effect
(no options) The default behavior. Read input from

file, print most general type to terminal,
and write compiled program to file.

--parse, -p Do not compile; parse and type-check
only.

--step, -s Print CBN reduction sequence.
--reduce, -r Reduce term to CBN normal form.
--untyped, -u Omit type-checking.
--optimize, -z Create optimized compiled code.
--typeinfo mode,
-i mode

Print additional type information de-
pending onmode.

--term term Useterm as input.
--stdin Read input from terminal.
--stdout Write output to terminal.
--output filename,
-o filename

Write output to specified file.

--help, -h Print help message and exit.
--version, -v Print version info and exit.

28

The --term , --stdin , --stdout , and--output filename flags affect
where the compiler looks for input and where it writes the output. When using the
--term term flag one may find it useful to encloseterm in quotation marks. This
will prevent shell substitutions.

The --help flag provides a list and brief description of all PPL options. The
--version flag gives information on which version of the compiler is in use.

There is also a graphical user interface for PPL calledppli . It is written in Tcl/Tk.
In Unix, it can be accessed by typingwish ppli at the command line.ppli pro-
vides a window to type a PPL program or load a program from a file, together with
various buttons for compiling, reducing, and stepping through the reduction sequence
of a term.

7.3 Example Programs

Our compiler for PPL comes with several example programs. The fileprograms.txt ,
also available at [6], contains a list and description of each program.

8 Future Work

We have implemented PPL as a self-contained example of a functional programming
language. It is intended as a basis for experimenting with improved implementation
techniques, as well as new language features. Features that we would like to add in the
future include improved source level optimization, closure optimization, general recur-
sive types, non-local control features in the style of theλµ-calculus, and a run-time
system with a proper garbage collector. We are also interested in extending automatic
type inference to recursive types, and the interaction of lazy evaluation and continua-
tions.

29

9 Appendix: Assembly Code For PPL Terms

[[x]]s =

LOAD C, s(x)
JUMP [C, 0]

[[λx.M]]s =

CMP SS,#1
BGE l
EXIT “fn”

l : POP r
[[M]]s(x7→r)

(wherel is a new label andr is a new
register.)

[[Mx]]s =

PUSH s(x)
[[M]]s

[[MN]]s =

; build closure forN
ALLOC r,#(n+ 1)
LOAD [r, 0], l
LOAD [r, 1], s(x1)
. . .
LOAD [r, n], s(xn)
PUSH r
[[M]]s

l : [[N]](x1 7→[C,1],... ,xn 7→[C,n])

(wherel is a new label,r is a new regis-
ter,N is not a variable, andFV (N) =
{x1, . . . , xn}.)

[[let x = M in N]]s =

; build closure forM
ALLOC r,#(n+ 1)
LOAD [r, 0], l
LOAD [r, 1], s(x1)
. . .
LOAD [r, n], s(xn)
[[N]]s(x7→r)

l : [[M]](x1 7→[C,1],... ,xn 7→[C,n])

(wherel is a new label,r is a new regis-
ter, andFV (M) = {x1, . . . , xn}.)

[[let recx = M in N]]s =

; build closure forM
ALLOC r,#(n+ 1)
LOAD [r, 0], l
LOAD [r, 1], s′(x1)
. . .
LOAD [r, n], s′(xn)
[[N]]s′

l : [[M]](x1 7→[C,1],... ,xn 7→[C,n])

(wherel is a new label,r is a new regis-
ter,FV (M) = {x1, . . . , xn}, ands′ =
s(x 7→ r).)

[[n]]s =

LOAD V,#n
CMP SS,#1
BGE l
EXITINT V

l : POP r
JUMP r

(wherel is a new label andr is a new
register.)

[[true]]s =

LOAD V,#1
CMP SS,#1
BGE l
EXITBOOL V

l : POP r
JUMP r

(wherel is a new label andr is a new
register.)

[[false]]s =

LOAD V,#0
CMP SS,#1
BGE l
EXITBOOL V

l : POP r
JUMP r

(wherel is a new label andr is a new
register.)

30

[[()]]s =

EXIT “()”

[[(M1, . . . ,Mn)]]s =

CMP SS,#1
BGE l1
EXIT “n-tuple”

l1 : POP r
CMP r,#1
BNE l2
[[M1]]s

l2 : CMP r,#2
BNE l3
[[M2]]s

l3 : . . .
. . .

ln : [[Mn]]s

(wheren ≥ 2, l1, . . . , ln are new labels,
andr is a new register.)

[[pijnM]]s =

PUSH #j
[[M]]s

[[injnM]]s =

CMP SS,#1
BGE l1
EXIT “inj/n”

l1 : ; build closure forM
ALLOC r,#(n+ 1)
LOAD [r, 0], l2
LOAD [r, 1], s(x1)
. . .
LOAD [r, n], s(xn)
POP C
PUSH r
; invokejth branch of match closure
JUMP [C, j − 1]

l2 : [[M]](x1 7→[C,1],... ,xn 7→[C,n])

(wherel1, l2 are new labels,r is a new
register, andFV (M) = {x1, . . . , xn}.)

[[caseM of in1
k y1 ⇒ N1 | . . . | inkk yk ⇒ Nk]]s =

; build match closure
ALLOC r,#(k + n)
LOAD [r, 0], l1
. . .
LOAD [r, k − 1], lk
LOAD [r, k], s(x1)
. . .
LOAD [r, k + n− 1], s(xn)
PUSH r
[[M]]s

l1 : [[λy1.N1]](x1 7→[C,k],... ,xn 7→[C,k+n−1])

. . .
lk : [[λyk.Nk]](x1 7→[C,k],... ,xn 7→[C,k+n−1])

(wherel1, . . . , lk are new labels,r is a new regis-
ter, andFV (in1

k y1 ⇒ N1 | . . . | inkk yk ⇒ Nk) =
{x1, . . . , xn}.)

31

References

[1] H. P. Barendregt.The Lambda Calculus, its Syntax and Semantics. North Holland,
2nd edition, 1984.

[2] L. Damas and R. Milner. Principal type-schemes for functional programs. In9th
Symposium on Principles of Programming Languages, pages 207–212, 1982.

[3] C. Hankin.Lambda Calculi: A Guide For Computer Scientists. Oxford University
Press, 1994.

[4] S. C. Kleene. λ-definability and recursiveness.Duke Mathematical Journal,
2:340–353, 1936.

[5] J.-L. Krivine. Un interpreteur du lambda-calcul. Draft, available from
ftp://ftp.logique.jussieu.fr/pub/distrib/interprt.dvi, 1996.

[6] A. Lamstein and P. Selinger. Implementation of the programming language PPL,
Oct. 2000. Available from http://theory.stanford.edu/˜selinger/ppl/.

[7] R. Milner. A theory of type polymorphism in programming.Journal of Computer
and System Sciences, 17:348–375, 1978.

[8] G. E. Revesz. Lambda-Calculus, Combinators, and Functional Programming.
Tracts in Theoretical Computer Science 4. Cambridge University Press, 1998.

[9] J. A. Robinson. A machine-oriented logic based on the resolution principle.Jour-
nal of the Association for Computing Machinery, 12:23–41, 1965.

32

