
Proc. QPL 2004, pp. 179–195

Non-deterministic quantum programming

Paolo Zuliani∗

Abstract

In standard computation, non-determinism is used for specifying programs’ be-
haviour, without having to specify details of implementation. In quantum computation,
non-determinism is either meant to be “classical” probabilism or it is not considered
at all, since quantum computation is the physical theory of computation and thus it
does not deal with non-implementable features. In this work we will instead show
that non-determinism may be useful also in quantum computation. In particular, we
consider non-determinism embedded in a programming language for quantum compu-
tation, the quantum Guarded-Command Language (qGCL), and use that for describing
and reasoning about counterfactual computation and mixed-state systems.

1 Introduction

In standard computation, non-determinism provides a way for specifying and reasoning
about programs. In particular, non-determinism is used for specifying programs’ be-
haviour, without having to specify details of implementation. Such details may be made
more precise (refined) at a later stage, though program correctness is preserved through-
out reasoning. In quantum computation, non-determinism is either meant to be “classical”
probabilism or it is not considered at all, since quantum computation is the physical theory
of computation and thus it does not deal with non-implementable features. In this work
we will instead argue that non-determinism may be useful also in quantum computation.

We consider non-determinism embedded in a programming language for quantum
computation, the quantum Guarded-Command Language, qGCL [9]. qGCL has a rig-
orous semantics and an associated refinement calculus, and it has been successfully used
to describe and reason about all known quantum algorithms and also to derive one of them
(the Deutsch-Jozsa algorithm) from its specification. In this work, we use qGCL equipped
with a non-deterministic choice construct to model and reason about counterfactual com-
putation and quantum mixed-state systems.

Counterfactuality is the capacity to infer propositions about an event by the sole fact
that the event might have occurred, it is not required the event to actually take place.
Counterfactual computation [6] makes use of quantum mechanics’ peculiarities to infer the
outcome of a computation without running that computation. In particular, it is possible
to devise methods for probabilistically inferring the outcome of a computation without

∗Facolt̀a di Scienze e Tecnologie Informatiche, Libera Università di Bolzano, piazza Domenicani 3, 39100
Bolzano, Italy, pzuliani@unibz.it

180 P. Zuliani

actually running the computation: the mere fact that the quantum computer implementing
that computation might have run is sufficient. We illustrate an example of counterfactual
computation and show that it can be rigorously formalised and reasoned about by means
of qGCL.

Mixed-state systems [3] are a generalisation of standard quantum systems for which
the state is best described by a probability distribution over “pure” quantum states. Mixed
state systems find application in the description of “real” quantum systems where, due to
unavoidable causes (e.g.imperfections in our apparatuses or interactions with the environ-
ment), the exact state of the system cannot be specified. We show that qGCL can model
such systems by proving that the treatment of mixed states in qGCL is consistent with the
corresponding quantum formalism, the density matrix formalism.

The qGCL treatment of counterfactual computation and mixed-state systems thus pro-
vide an example of use of programming languages for describing and analysing quantum
computation in the broadest sense.

2 Quantum programming

We give here a short presentation of the features of qGCL (a full introduction can be found
in [9]). We assume some familiarity with the basics of quantum computation [8].

2.1 Quantum types

We define the typeB =̂ {0, 1}, which we will treat as booleans or bits, depending on
convenience. A classical register of sizen:N is a vector ofn booleans. The type of all
registers of sizen is then defined to be the set of boolean-valued functions on{0, 1, . . . , n−
1}:

Bn =̂ {0, 1, . . . , n− 1} −→ B .

The quantum analogue ofBn is given by transformq and it is the set of complex-valued
functions onBn whose squared modulus sum to 1:

q(Bn) =̂ {χ:Bn −→ C |
∑
x:Bn

|χ(x)|2 = 1} .

An element ofq(B) is called aqubitand that ofq(Bn) aqureg. Classical state is embedded
in its quantum analogue by the Dirac delta function:

δ:Bn −→ q(Bn)
δx(y) =̂ (y = x) .

The range ofδ, {δx | x:Bn}, forms abasis(called thestandard basis) for quantum states,
that is:

∀χ:q(Bn) • χ =
∑
x:Bn

χ(x)δx .

The Hilbert spaceBn −→ C (with the structure making it isomorphic toC2n

) is called
the enveloping spaceof q(Bn). The usual scalar product becomes the application〈·, ·〉:
q(Bn)× q(Bn) → C defined by:

Non-deterministic quantum programming 181

〈ψ, φ〉 =̂
∑
x:Bn

ψ(x)∗φ(x)

wherez∗ is the complex conjugate ofz:C. Thelengthof ψ is defined‖ψ‖ =̂ 〈ψ,ψ〉 1
2 .

2.2 Quantum language qGCL

qGCL is an extension of theprobabilisticGuarded-Command Language, pGCL [7], which
in turn extends Dijkstra’s Guarded-Command Language GCL [1] with probabilism. A
Guarded-Command Language program is a sequence of assignments andskip manipulated
by the standard constructors of sequential composition, conditional selection, repetition
and nondeterministic choice [1]. Assignments is in the formx := e, wherex is a vector
of program variables ande a vector of expressions whose evaluations always terminate
with a single value. pGCL denotes the Guarded-Command Language extended with the
binary constructorp⊕ for p:[0, 1], in order to deal with probabilism. Other pGCL basic
statements and constructors which will be used in this paper are:

• var • rav, variable declaration and local block;

• sequential composition,R # S;

• iteration,while cond do S od;

• conditional,RC condB S, executesR if cond is true andS otherwise;

• probabilistic choice,R p⊕S, which executesR with probabilityp andS with prob-
ability 1− p;

• non-deterministic choice,R � S, that executes eitherR orS, the choice of which is
unknown at the current level of abstraction (it is also known as “demonic” choice);

• procedure declaration,proc P (param) =̂ body, wherebody is a pGCL statement
andparam is the parameter list, which may be empty. Parameters can be declared
asvalue, result or value result: a value parameter is read-only, aresult parameter
is write-only and avalue result parameter can be read and written. ProcedureP is
invoked by simply writing its name and filling the parameter list according toP ’s
declaration.

For the probabilistic combinatorp⊕ we allowp to be an expression whose evaluation
returns a real in[0, 1]. Probabilistic choice may be written using a prefix notation, in case
the branches are more than two. Let[(Pj , rj) • 0 6 j < m] be a finite indexed family of
(program, number) pairs with

∑
06j<m rj = 1, then the probabilistic choice in whichPj

is chosen with probabilityrj is written in prefix form

⊕[Pj @ rj • 0 6 j < m]

(whose advantage is to avoid the normalising factors required by nested infix form).
Semantics for pGCL can be given either relationally [4] or in terms of expectation

transformers [7]. Expectation-transformer semantics is a probabilistic extension of the

182 P. Zuliani

predicate-transformer one. In predicate-transformer semantics a transformer maps post-
conditions to their weakest pre-conditions. Analogously, an expectation transformer rep-
resents a computation by mapping post-expectations to their greatest pre-expectations. We
shall retain thewp prefix notation of predicate-transformer calculus for convenience and
we denote the greatest pre-expectation of post-expectationq on programP bywp.P.q. For
a standard predicatep we denote by[p] its embedding into expectation transformers: the
greatest pre-expectationwp.P.[p] is then theminimum guaranteed probabilitythatp holds
after the execution ofP .

pGCL enjoys a refinement calculus, which derives from the semantics above; when we
say that programQ refines programP , writtenP v Q, we mean:

P v Q =̂ ∀q:Q • wp.P.q V wp.Q.q .

Intuitively, P v Q means thatQ is at least at deterministic asP . WhenP w Q and
P v Q thenP andQ are equal programs and we writeP = Q.

In pGCL (demonic) non-determinism is expressed semantically as the combination of
all possible probabilistic resolutions:

wp.(P � Q) = u{wp.(P r⊕Q) • r:[0, 1]}.

Thus a non-deterministic choice between two programs is refined by any probabilistic
choice between them:

∀r:[0, 1] • P � Q v P r⊕Q.

2.2.1 Quantum programs

A quantum programis a pGCL program invoking quantum procedures and the resulting
language is called qGCL. Quantum procedures can be of three kinds:Initialisation (or
state preparation) followed byEvolutionand finally byFinalisation(or observation).

Initialisation is a procedure which simply assigns to its qureg state the uniform square-
convex combination of all standard states

∀χ:q(Bn) • In(χ) =̂

(
χ :=

1√
2n
∑
x:Bn

δx

)
.

Evolutionmodels the evolution of quantum systems and consists of iteration of unitary
transformations on quantum state. A unitary operatorU is invertible and preserves scalar
products or, equivalently:

∀χ, ψ:q(Bn) • 〈U(χ), U(ψ)〉 = 〈χ, ψ〉.

In qGCL evolution is modelled via assignment: for example,χ := U(χ) models the
evolution of quregχ by means of unitary transformU .

The content of a qureg can be read (measured) through quantum procedureFinalisa-
tion and suitableobservables. LetO be an observable defined by the family of pairwise
orthogonal subspaces{Sj | 0 6 j < m}. In our notation we writeFin[O](i, χ) for the

Non-deterministic quantum programming 183

measurement ofO on a quantum system described by stateχ:q(Bn). After the measure-
ment, variablei stores the index of the subspace to which the state is reduced andχ stores
that state. Finalisation is entirely defined using the probabilistic combinator of pGCL:

Fin[O](i, χ) =̂ ⊕
[(

i, χ := j,
PSj

(χ)
‖PSj (χ)‖

)
@ 〈χ, PSj

(χ)〉 | 0 6 j < m

]
.

wherePSj
is the projector onto subspaceSj . In the case of the one-dimensional space

Cψ =̂ {αψ • α:C} spanned byψ:q(Bn) the projector is defined by:

∀χ:q(Bn) • Pψ(χ) =̂ 〈ψ, χ〉ψ .

We also note that if‖PSj
(χ)‖ = 0 then〈χ, PSj

(χ)〉 = 0 and therefore by laws P-1 and
P-2 (see Appendix) the definition holds in that case, too.

The definition ofFin remains also valid when an observableO is defined by a self-
adjoint operatorO. In that case the projector for thej-th eigenspace ofO is writtenP jO.

3 Counterfactuality

Counterfactuality is the fact that the sole possibility for an event to occur allows one to gain
some information about that event, even though it did not actually occur. Counterfactual
computation [5, 6] uses peculiar features of quantum mechanics to infer counterfactual
statements about the result of a computation. In particular, it is possible to devise methods
for probabilistically inferring the outcome of a computation without actually running the
computation: the mere fact that the quantum computer implementing that computation
might have run is sufficient.

One of the first examples of counterfactuality was given by Elitzur and Vaidman [2]
with the so-calledinteraction-freemeasurements. That technique allows determining the
presence of an object by means of a test particle, possibly with no “interaction” occurring
between the object and the test particle. A potential application of this technique is the
acquisition of the image of an object without any light or other radiation interacting with
the object (see [10] for example).

If one replaces the object with a quantum computer implementing some computationC
and the test particle with the computer’s “switch”, it is then possible to know the outcome
of computationC without the computer ever being turned on. This application of quantum
mechanics is known as counterfactual computation and it was firstly introduced by Jozsa
[5] and then further formalised by Mitchison and Jozsa [6].

4 Counterfactual computation

4.1 Introduction

We begin by recalling the terminology and concepts introduced by Mitchison and Jozsa
[6]. Suppose we are given a decision problem (i.e.a problem with a binary solution, “yes”
or “no”) and a quantum computerQC with an “on-off” switch programmed to solve that

184 P. Zuliani

problem when the switch is set to “on”. Therefore we need a qubit to represent the switch
and another qubit for the result of the computation. The computer might need an extra
qureg to use during its functioning, thus we need in total two qubits and a qureg, whose
size depends on the problem being solved.

When the switch is set to “on” the computer carries out one of the two unitary opera-
tionsQC0 orQC1, depending on the answer of the problem; we suppose the computation
takes at mostT time units. By mapping “off” to 0 and “on” to 1 we see thatQC0 is just
the identity transform over the switch and output qubits, whileQC1 is Feynman’s CNOT
transformation on the same two qubits. We recall the definition of CNOT on standard bits:

∀c, x:B • CNOT (c, x) =̂ (c,¬xc+ ¬cx) .

That definition is easily lifted to qubits viaδ.
The goal is to start with the switch “off” and, after at least a timeT , to determine

which operationQC0 orQC1 has been performed, without setting the switch to “on”. We
assume we are unable to access the extra qureg.

In qGCL the computerQC can be modelled as:

QC =̂ CNOT � skip

thus naturally representing our ignorance about the inner working of the computer and the
result of the decision problem. However, another equivalent modellisation ofQC will be
more useful for us. By semantics arguments it is possible to show that:

QC =

 var t:B•
CNOT C tB skip

rav


That is, non-deterministic choice can be seen as a conditional over an uninitialised boolean
variable.

We now code in qGCL the definition ofprotocol given by Mitchison and Jozsa [6].
For a datatypeT we denote byseq(T) the datatype of the sequences of elements of type
T . The empty sequence is denoted by〈 〉; concatenation is denoted by+.

Definition 4.1. A protocol G is a terminating procedure with the following signature:

proc G (value t:B, result o:seq(Bn), result s:seq(B)) =̂ body

where:

• body, according to Mitchison and Jozsa [6], is “a sequence of steps where each step
is one of the following:

(a) A unitary operation (not involving the computer) on a finite number of specified
qubits.

(b) A measurement on a finite number of specified qubits.

(c) An ‘insertion of the computer’(eitherQC0 or QC1), where the state of two
selected qubits is swapped into the switch and output registers of the computer,
a timeT is allowed to elapse and finally the states are swapped back out into
the two selected qubits”.

Non-deterministic quantum programming 185

• t specifies the computation to be performed by the quantum computerQC (i.e.either
QC0 orQC1).

• o returns the list of outcomes of the measurements of steps of type (b).

• s returns the list of “switch observation” outcomes resulting from the measurement
of the switch qubit after each insertion of the computer (steps of type (c)).

The two listso ands collectively denote ahistory [6]. We are now ready to formalise
the definition of counterfactual computation in our approach.

Definition 4.2. A sequence of measurement outcomesm:seq(Bn) is a counterfactual
outcomeof typet:B if there exists a protocolG satisfying the following two conditions:

1) ∀c:seq(B) • wp.G(1− t, o, s).[o = m ∧ s = c] ≡ 0

2) ∀c:seq(B) • c 6= 0∗ iff wp.G(t, o, s).[o = m ∧ s = c] ≡ 0,

where0∗ denotes an all-zero sequence.

Condition 1 states that whenQC1−t is used in the protocol,m is seen with probability
zero, i.e. it never occurs. Condition 2 states that ifQCt is used then for any switch se-
quence but an all-off one,m is never seen. The only way to havem as outcome sequence
is whenQCt is used and the switch sequence contains only “off”s. Therefore we may
say that we can infer the result (t) of the computation for “free”, since the switch of the
quantum computer was always found at “off”.

4.2 Example

We code here in qGCL the following example developed by Jozsa [5]. We first explain it
in an informal way, in order to put the idea forward.

It starts with the switch and output registers set to stateδ00. They are then “rotated” to
state(cos θ · δ00 + sin θ · δ10), whereθ =̂ π

2N for some positive integerN . The quantum
computer is then inserted, thereby giving the state(cos θ · δ00 + sin θ · δ1t), depending on
whichQCt is used. We now measure the output register (right-hand qubit) and we have
to distinguish two cases:t = 0 andt = 1. If t = 0 then the measurement does not affect
the state and we repeat the preceding steps, from the rotation of the qubits on. Ift = 1 the
measurement reduces the state toδ00 with probability cos2 θ and toδ11 with probability
sin2 θ. In the former case the protocol repeats the preceding steps; in the latter case we
learn that the result of the computation is 1 and the computer has run, thereby halting the
protocol.

After N iterations, ift = 0 the state will have been “rotated” toδ10 with probability
1. If t = 1, the state will beδ00 with probability cos2N θ. In this case we learn that
the answer to the decision problem is 1 without running the computer, since the switch
has always been seen at “off”! The probabilitycos2N θ approaches 1 asN grows. To
summarise:

• if the answer to the problem is 0 we learn that for certainty, but the computer has
run;

186 P. Zuliani

• if the answer is 1 then with high probability we learn that for “free”,i.e. without
running the computer.

In qGCL the protocol is formalised by procedureS:

proc S (value t:B, result o:seq(B), result s:B) =̂
var χ:q(B2), r:B , i:{0, . . . , N} •

r, i, o := 0, 0, 〈 〉#
χ := δ00#
while (i < N ∧ ¬r) do

χ := (Hθ ⊗ 1)(χ)#
QC(t, χ)#
Fin[O](r, χ)#
(skip) C r B (i, o := i+ 1, o+ r)

od
Fin[S](s, χ)#
o := o+ s

rav

where:

χ is the qureg of size 2 representing the switch qubit and the output qubit;

N is a positive integer;

Hθ is the (unitary) “rotation” transformation defined as (θ = π
2N):

Hθ:q(B) → q(B)
Hθ(χ)(x) =̂ (1− x)(χ(0) cos θ − χ(1) sin θ) + x(χ(0) sin θ + χ(1) cos θ)

1 is the identity transform of appropriate size;

QC is the quantum computer (see Section 4.1):

QC(t, χ) =̂ (χ := CNOT (χ) C tB skip);

observableO measures the output qubit (⊕ denotes direct sum of subspaces):

O =̂ [(Cδ0 ⊕Cδ1)⊗Cδ0, (Cδ0 ⊕Cδ1)⊗Cδ1].

observableS measures the switch qubit:

S =̂ [Cδ0 ⊗ (Cδ0 ⊕Cδ1), Cδ1 ⊗ (Cδ0 ⊕Cδ1)];

Non-deterministic quantum programming 187

We have omitted the extra qureg for the quantum computer, as it is not useful to our aims;
we recall thatδ00 is just shorthand forδ0 ⊗ δ0.

The sequencem =̂ 0N+1, i.e. the(N +1)-long sequence of zeroes, is a counterfactual
computation of type 1. In particularm satisfies the conditions:

1) ∀c:B • wp.S(0, o, s).[o = 0N+1 ∧ s = c] ≡ 0

2) c = 1 iff wp.S(1, o, s).[o = 0N+1 ∧ s = c] ≡ 0.

Condition 1 expresses the fact that0N+1 is never seen ift = 0. Condition 2 states that
0N+1 is seen if and only if the switch is at off.

Furthermore we have that :

3) wp.S(1, o, s).[o = 0N+1 ∧ s = 0] ≡ cos2N θ,

and in this case the computer has not run (s = 0), yet we know that the answer to our
problem is 1. Therefore we have a probabilitycos2N θ of learning the result for “free”,
i.e. without running the computer. By increasingN we can make this probability as close
to 1 as we wish.

Complete proof for the three claims above can be found in [11].

4.3 Probabilistic extension

In this section we formalise in qGCL the probabilistic extension of counterfactual com-
putation proposed by Mitchison and Jozsa [6]. In particular, they considered the case
in which we allow a relaxation of conditions 1 and 2 of the definition of counterfactual
outcome (definition 4.2). We thus have the following definition.

Definition 4.3. A sequence of measurement outcomesm:seq(Bn) is an approximate
counterfactual outcomeof type t:B if there exists a protocolG satisfying the following
two conditions:

1′) ∀c:seq(B) • wp.G(1− t, o, s).[o = m ∧ s = c] < ε

2′)
∑
c:seq(B),c6=0∗ wp.G(t, o, s).[o = m ∧ s = c] < ε

where0∗ denotes any all-zero (“all-off”) sequence andε is a small real in the(0, 1] interval.

Condition2′ means thatm has little probability to be seen when the computer has
run (becausec 6= 0∗). Similarly, condition1′ means thatm has little probability to be
seen when the “wrong computer”QC1−t is used. Together, the two conditions ensure that
when we seem then with high probability the answer to the decision problem ist, and
with high probability the quantum computerQC has not run.

4.4 Probabilistic protocol

We now give an example of probabilistic protocol which can infer the answer to the deci-
sion problem with certainty, but requires a run of the quantum computer with probability
50%. We first draft the functioning of the protocol in words, then we code it in qGCL, and

188 P. Zuliani

we finally prove its correctness. Again, for simplicity we write the state of the switch and
of the output qubits as a single qureg.

We start with the switch and output register in the equally-weighted superposition of
standard states, that isχ = 1

2

∑
i:B2 δi. Then we perform phase inversion on stateδ11,

thus givingχ = 1
2 (δ00 + δ01 + δ10 − δ11). We apply the quantum computer:

χ =

{
v0 =̂ 1

2 (δ00 + δ01 + δ10 − δ11) if t = 0
v1 =̂ 1

2 (δ00 + δ01 + δ11 − δ10) if t = 1

We now measureχ using observableV (⊥ denotes the orthogonal subspace)

V =̂ [V0, V1, (V0 ⊕ V1)⊥]
V0 =̂ Cv0 , V1 =̂ Cv1 .

Sincev0 ⊥ v1, we are thus able to learnt with certainty and we dot not perturb stateχ.
A subsequent measurement of the switch qubit reducesχ to its “off” subspace (i.e.switch
set to 0) with probability 50%.

In qGCL the protocol is coded as follows:

procK (value t:B, result o:B, result s:B) =̂
var χ:q(B2) •

In(χ)#
χ := Tδ11(χ)#
QC(t, χ)#
Fin[V](o, χ)#
Fin[S](s, χ)#

rav

where:

for function f :Bn → B between registers, unitary transformationTf between
quregs invertsχ (pointwise) about 0 iff holds and otherwise leaves it unchanged

Tf :q(Bn) → q(Bn)

(Tfχ)(x) =̂ (−1)f(x)χ(x)

observableS =̂ [S0, S1] measures the switch qubit:

S0 =̂ Cδ0 ⊗ (Cδ0 ⊕Cδ1), S1 =̂ Cδ1 ⊗ (Cδ0 ⊕Cδ1) .

It can be easily shown that form:B we have:

a) wp.K(m, o, s).[o = m, s = 0] = 1
2

b) wp.K(1−m, o, s).[o = m] = 0.

Non-deterministic quantum programming 189

We reason directly on procedureK ’s body:

K ′s body

= definition ofIn

χ := 1
2 (δ00 + δ01 + δ10 + δ11)#

χ := Tδ11(χ)#
QC(t, χ)#
Fin[V](o, χ)#
Fin[S](s, χ)

= definition ofTf and law A-2

χ := 1
2 (δ00 + δ01 + δ10 − δ11)#

QC(t, χ)#
Fin[V](o, χ)#
Fin[S](s, χ)

= definition ofQC and law A-1(
χ := 1

2 (δ00 + δ01 + δ10 − δ11)#
χ := CNOT (χ)

)
C tB

(
χ := 1

2 (δ00 + δ01 + δ10 − δ11)#
skip

)
#

Fin[V](o, χ)#
Fin[S](s, χ)

= law A-2, definition ofCNOT andskip identity

(χ := 1
2 (δ00 + δ01 − δ10 + δ11)) C tB (χ := 1

2 (δ00 + δ01 + δ10 − δ11))#
Fin[V](o, χ)#
Fin[S](s, χ)

= law S-2(
χ := 1

2 (δ00 + δ01 − δ10 + δ11)#
Fin[V](o, χ)

)
C tB

(
χ := 1

2 (δ00 + δ01 + δ10 − δ11)#
Fin[V](o, χ)

)
#

Fin[S](s, χ)

= introducev0, v1 and definition ofFin

⊕

 χ := v1#

o, χ := j,
PVj

(χ)

‖PVj
(χ)‖

@〈χ, PVj (χ)〉 | j:{0, 1, 2}

C tB

⊕

[(
χ := v0#

o, χ := k,
PVk

(χ)

‖PVk
(χ)‖

)
@〈χ, PVk

(χ)〉 | k:{0, 1, 2}

]
#

Fin[S](s, χ)

= law A-2 and linear algebra

190 P. Zuliani

(o, χ := 1, v1) C tB (o, χ := 0, v0)#
Fin[S](s, χ)

= law S-2 and definition ofFin

⊕

 o, χ := 1, v1#

s, χ := j,
PSj

(χ)

‖PSj
(χ)‖

@〈χ, PSj (χ)〉 | j:B

C tB

⊕

[(
o, χ := 0, v0#

s, χ := k,
PSk

(χ)

‖PSk
(χ)‖

)
@〈χ, PSk

(χ)〉 | k:B

]
= law A-2 and linear algebra

[(o, s, χ := 1, 0, 1√
2
(δ00 + δ01)) 1

2
⊕ (o, s, χ := 1, 1, 1√

2
(δ11 − δ10))]

CtB

[(o, s, χ := 0, 0, 1√
2
(δ00 + δ01)) 1

2
⊕ (o, s, χ := 0, 1, 1√

2
(δ10 − δ11))]

By inspection we can easily see that conditions a) and b) are fully satisfied. Therefore,
outcomem:B is an approximate counterfactual outcome of typem for protocolK, which
thus exhibits two counterfactual outcomes (i.e. 0 and 1). We also note that via condition
b) K enjoys a stronger property than condition2′ of definition 4.3: that reflects the fact
thatK can establish the correct answer of the problem with certainty. In some sense, our
protocol lies between standard counterfactual protocols, defined by 4.2, and approximate
counterfactual protocols.

Mitchison and Jozsa [6] also exhibited a protocol with two counterfactual outcomes
which fully satisfies condition 1 and 2 of definition 4.2. However, their protocol is some-
how less efficient than ours, as for thatp0 = p1 = 0.172, thereby givingp0 + p1 = 0.344.
Our protocolK clearly givesp0 + p1 = 1.

5 Mixed States and Density Matrices

The notion of mixed state arises from the observation that in fact we might not know the ex-
act state of a quantum system. Because of imperfections in our apparatuses or unavoidable
interactions with the environment, the best we can do is to express the state of the system as
a probability distribution over quantum states. Themixed stateρ =̂ {(ψi, wi) | 0 6 i < n}
represents the state of a quantum system where the probability of the system to be in quan-
tum stateψi iswi (of course we must have

∑
06i<n wi = 1).

In vector-space Quantum Mechanics, states are represented by normalised vectors in
some Hilbert space. In the same approach, mixed states are instead represented by a
particular class of operators over Hilbert spaces, calleddensity matrices. The density
matrix corresponding to mixed stateρ is the operator̂ρ defined:

ρ̂ =̂
∑

06i<n

wiPψi
.

Another approach is to specify no state at all and just saying that the system is in
“some” state. In computing that equals to declare a variable: we define the state of an

Non-deterministic quantum programming 191

object to be of some type (i.e. the range of possible values), though we do not know the
actual state (i.e. the actual content of the variable) and an assignment is needed before
using that variable. In qGCL we would writevarχ:q(B) • rav, which can be proved
to be equal to the non-deterministic choice over all possible qubits. Again, we model our
ignorance using non-determinism.

By laws D-2 and D-3 it is possible to prove that:

(var χ:q(B) • rav) v

 var χ:q(B)•
⊕[χ := ψi @ wi | 0 6 i < n]

rav


Therefore, the mixed stateρ above is simply represented by:

⊕[χ := ψi @ wi | 0 6 i < n].

This is consistent with the density matrix formalism, as we show in the next sections. We
observe that the state after finalisation of a qureg is indeed a mixed state.

5.1 Observation of mixed states

In this section we show that qGCL fully satisfies Quantum Mechanics’ axioms for the
observation of a mixed state.

We now consider the state reduction (observation) of a density matrix caused by an
observableO with spectrum{0, . . . ,m−1}. We first recall that quantum stateψ is reduced
to stateψjred defined as:

ψ → ψjred =̂
Pjψ

‖Pjψ‖
0 6 j < m.

The action ofO on the density matrix̂ρ =̂ (
∑

06i<n wiPψi
) reduces it tôρred:

ρ̂→ ρ̂red =̂
∑

06j<m

P j ρ̂P j .

It is a matter of simple linear algebra to show that:

ρ̂red =
∑

06i<n, 06j<m

wi〈ψi, Pjψi〉Pψi
j
red

(1)

that is, ρ̂ is the mixed state composed by statesψi
j
red with probabilitieswi〈ψi, Pjψi〉,

whereψi
j
red is the projection ofψi by means of projectorPj .

We now compute the observation of a mixed state in qGCL:

⊕[χ := ψi @ αi | 0 6 i < n] # Fin[O](r, χ)

=

⊕[(χ := ψi # Fin[O](r, χ)) @ αi | 0 6 i < n]

= Definition ofFin

192 P. Zuliani

⊕

[(
χ := ψi #⊕

[(
r, χ := j,

PSj
(χ)

‖PSj
(χ)‖

)
@〈χ, PSj (χ)〉 | 0 6 j < m

])
@

αi | 0 6 i < n

]
= programming law

⊕

[
⊕
[(

χ := ψi # r, χ := j,
PSj

(χ)

‖PSj
(χ)‖

)
@ 〈ψi, PSj (ψi)〉 | 0 6 j < m

]
@

αi | 0 6 i < n

]
= programming law

⊕

[
⊕
[(

r, χ := j,
PSj

(ψi)

‖PSj
(ψi)‖

)
@ 〈ψi, PSj (ψi)〉 | 0 6 j < m

]
@

αi | 0 6 i < n

]
= programming law

⊕
[(

r, χ := j,
PSj

(ψi)

‖PSj
(ψi)‖

)
@ αi〈ψi, PSj

(ψi)〉 |
0 6 j < m
0 6 i < n

]
= introduceA

A

From programA we see that the final state after observation is the mixed state:

⊕
[(

χ :=
PSj

(ψi)
‖PSj (ψi)‖

)
@ αi〈ψi, PSj (ψi)〉 |

0 6 j < m
0 6 i < n

]
which is consistent with the density matrix formalism.

Quantum mechanics postulates that the probability of observing a particular outcome
k:{0, . . . ,m− 1} is:

Prob(O = k; ρ) =̂
∑

06i<n

wi〈ψi, Pkψi〉

with the assumption that the classical probabilitieswi’s and the quantum-mechanical prob-
abilities are independent. We now calculate in qGCL the probability of observing a partic-
ular outcomek:{0, . . . ,m− 1}. First we abstract programA by deleting the initialisation
of χ:

A′ =̂ ⊕
[

(r := j) @ αi〈ψi, PSj (ψi)〉 |
0 6 j < m
0 6 i < n

]
then we calculatewp.A′.[r = k], the probability that the observation ofO returnsk:

wp.A′.[r = k]

= semantics of probabilistic assignment∑
06j<m,06i<n αi〈ψi, PSj

(ψi)〉 · wp.(r := j).[r = k]

= semantics of assignment∑
06j<m,06i<n αi〈ψi, PSj

(ψi)〉 · [j = k]

= logic

Non-deterministic quantum programming 193∑
06i<n αi〈ψi, PSk

(ψi)〉 = Prob(O = k; ρ)

5.2 Evolution of mixed states

The evolution of a density matrix̂ρ =̂ (
∑

06i<n wiPψi
) under unitary operatorU is de-

fined to be:

ρ̂→ ρ̂′ =̂ Uρ̂U†

whereU† is the conjugate transpose ofU . It can be easily shown that̂ρ′ is the mixed state
{(Uψi, wi) | 0 6 i < n}, that is:

ρ̂′ =
∑

06i<n

wiPUψi
. (2)

We now consider the unitary evolution of a mixed state using qGCL:

⊕[χ := ψi @ αi | 0 6 i < n] # χ := U(χ)

=

⊕[(χ := ψi # χ := U(χ)) @ αi | 0 6 i < n]

=

⊕[χ := U(ψi) @ αi | 0 6 i < n]

We have obtained the mixed state expressed by equation 2.

6 Conclusions

We showed that a high-level, unfeasible construct, non-deterministic choice, may be used
to formalise and reason about quantum computation, a theory which focuses only on im-
plementable computing. In particular, we used a non-deterministic choice constructor
coupled with the quantum programming language qGCL to formalise counterfactual com-
putation and mixed-state quantum systems.

Counterfactual computation allows a seemingly paradoxical effect: to infer the result
of a computation without running it. This remarkable fact can be achieved by means of
peculiar properties of quantum mechanics. We used qGCL to formalise and reason about
examples of counterfactual computation.

Mixed states and density matrices are a general formalism for dealing with probabilis-
tic quantum systems,i.e.quantum systems for which a probabilistic distribution is the best
description of the state of the system. We showed that qGCL can cope with mixed state
systems by showing that density matrices and qGCL treat mixed states in an equivalent
way. Moreover, no new construct is introduced into the language, thereby keeping it at the
minimum.

194 P. Zuliani

7 Acknowledgements

This work was done when visiting the Oxford University Computing Laboratory, with the
support ofConsiglio Nazionale delle Ricerche(Italy). The author would like to thank Jeff
Sanders for his support.

A Programming laws

We list a few algebraic laws which hold for pGCL programs; the semantic models adopted
and proofs can be found in [4, 7].

Law (P-1). P 1⊕ Q = P

Law (P-2). P r⊕ Q = Q 1−r⊕ P

Law (S-2). (P r⊕ Q) #R = (P #R) r⊕ (Q #R)

Law (A-1). (x := e) # (P r⊕ Q) = (x := e # P) r[x\e]⊕ (x := e #Q)

In law A-1 r[x\e] denotes the expression obtained replacing all free occurrences ofx
in r by e. Since standard conditional is a particular case of probabilistic choice, laws S-2
and A-1 hold for that, too.

In the next two lawsD is any data type; in law D-2 variablex must not appear in
expressionp.

Law (D-2). varx:D • (P p⊕ Q) = (varx:D • P) p⊕ (varx:D •Q)

Law (D-3). varx:D v (varx:D • x := e)

In law D-3e is any expression of typeD, meaning that initialising a variable will make
a program more deterministic.

References

[1] E. W. Dijkstra. Guarded commands, nondeterminacy and the formal derivation of
programs.CACM, 18:453–457, 1975.

[2] Avshalom C. Elitzur and Lev Vaidman. Quantum mechanical interaction-free mea-
surements.Foundations of Physics, 32(7):987–997, 1993.

[3] Chris J. Isham.Lectures on quantum theory. Imperial College Press, 1997.

[4] H. Jifeng, A. McIver, and K. Seidel. Probabilistic models for the guarded command
language.Science of Computer Programming, 28:171–192, 1997.

[5] Richard Jozsa. Quantum effects in algorithms.QCQC ’98 Springer-Verlag LNCS,
1509:103–112, 1999.

[6] Graeme Mitchison and Richard Jozsa. Counterfactual computation.Proceedings of
the Royal Society of LondonA, 457:1175–1193, 2001.

Non-deterministic quantum programming 195

[7] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers.ACM
Transactions on Programming Languages and Systems, 18(3):325–353, May 1996.

[8] Micheal A. Nielsen and Isaac L. Chuang.Quantum computation and quantum infor-
mation. Cambridge University Press, 2000.

[9] J. W. Sanders and P. Zuliani. Quantum programming.Mathematics of Program
Construction, Springer-Verlag LNCS, 1837:80–99, 2000.

[10] G.A. White, F.R. Mitchell, O. Nairz, and P. Kwiat. Interaction-free imaging.Physical
Review A, 58:605–613, 1998.

[11] Paolo Zuliani. Quantum Programming. PhD thesis, Oxford University Computing
Laboratory, 2001. Available at http://www.comlab.ox.ac.uk.

