
QPL 2005 Preliminary Version

Quantum patterns and types for entanglement
and separability

Simon Perdrix 1

Leibniz Laboratory

IMAG-INPG

Grenoble, France

Abstract

As a first step toward a notion of quantum data structures, we introduce a typing
system for reflecting entanglement and separability. This is presented in the context
of classically controlled quantum computation where a classical program controls
a sequence of quantum operations, i.e. unitary transformations and measurements
acting on a quantum memory. Abstract models for such quantum computations are
the Quantum Random Access Machine (QRAM [5]) and the Classically-Controlled
Quantum Turing Machine (CQTM [9]). Several quantum programming languages
follow this model [1,3,6,12,13]. Among them, the functional language defined by
Valiron [15] is the basis for the language developed in this paper. This is work in
progress.

Key words: Quantum programming languages, quantum types,
entanglement and separability.

1 Basic Notions: Separability and Entanglement

The state of a qubit is a normalized vector in the 2-dimensional Hilbert space
C

2. The state of a set of n qubits is generally described by a normalized vector
in the 2n-dimensional Hilbert space ⊗n

i=1C
2.

Among all possible states of a set of qubits, some of them are separable:

Definition 1.1 For a state |ϕ〉 of a set S of qubits, |ϕ〉 is separable iff
there exists a partition {A, B} of S (where both A and B are non empty
sets) and two states |ϕA〉 and |ϕB〉 of the respective parts A and B such that
|ϕ〉 = |ϕA〉 ⊗ |ϕB〉.

Definition 1.2 A quantum state |ϕ〉 is entangled iff |ϕ〉 is not separable.

1 Email: simon.perdrix@imag.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Perdrix

For instance, a Bell state 1√
2
(|01〉 − |10〉) and the GHZ state 1√

2
(|000〉 +

|111〉) are entangled. Entanglement is the basis for non-local operations (quan-
tum teleportation [8]) and constitutes a fundamental resource for measurement
based quantum computation [10,2]. Moreover, significant speedups (e.g. Shor
algorithm [14]) are made possible thanks to entanglement.

Notions of entanglement and separability can be extended to qubits, and
can be represented by a relation over the qubits of a set of qubits:

Definition 1.3 For a given state |ϕ〉 of a set S of qubits, two qubits x, y of S
are separable iff there exists a partition {X, Y } of the qubits of S such that
x ∈ X and y ∈ Y , and a state |ϕX〉 (|ϕY 〉) of the qubits in X (Y), such that
|ϕ〉 = |ϕX〉 ⊗ |ϕY 〉.

Definition 1.4 Two qubits x, y are entangled iff they are not separable.

Definition 1.5 For a given state |ϕ〉 of a set S of qubits, RE(|ϕ〉) is the
entanglement relation over the qubits of S: (x, y) ∈ RE iff x and y are
entangled.

Lemma 1.6 For any |ϕ〉, RE(|ϕ〉) is an equivalence relation.

Proof.

• For any qubit x, according to the previous definitions, x is entangled with
itself, so RE(|ϕ〉) is reflexive;

• RE(|ϕ〉) is trivially symmetric;

• given x, y, z such that (x, y) ∈ RE(|ϕ〉) and (y, z) ∈ RE(|ϕ〉). If x and z
are separable, there exist a partition {X, Z} of the qubits of |ϕ〉 and two
states |ϕX〉 , |ϕZ〉 such that |ϕ〉 = |ϕX〉 ⊗ |ϕZ〉. Since y is either in X or Z,
either (x, y) /∈ RE(|ϕ〉) or (y, z) /∈ RE(|ϕ〉). So, by contradiction, RE(|ϕ〉)
is transitive.

Thus RE(|ϕ〉) is an equivalence relation. 2

2 Types for Teleportation

In order to point out the importance of handling entanglement and separa-
bility in quantum programming languages, we analyze the specifications of a
program for teleportation.

Teleportation can be represented as a function taking three qubits and
outputting three qubits. The type of this function could be:

teleportation : qbit ⊗ qbit ⊗ qbit (qbit ⊗ qbit ⊗ qbit

where qbit ⊗ qbit is a type for any pair of two qubits, either entangled or
separable.

After teleportation, the third qubit (Bob’s qubit) is not entangled with the
other two because of the Bell measurement performed on them by Alice. Thus,

114

Perdrix

|ϕ〉
Bell

Bell
σ |ϕ〉

qbit × (qbit ⊗ qbit) (qbit ⊗ qbit) × qbit

Fig. 1. Input and output types for teleportation

this qubit can be manipulated independently without affecting the others. In
order to represent this separability, a cartesian product, instead of a tensor
product, may be used in the typing:

teleportation : qbit ⊗ qbit ⊗ qbit ((qbit ⊗ qbit) × qbit

Furthermore, the input to this function must be separable, since teleporta-
tion has no meaning if the input state is for instance a 3-qubit GHZ state
1√
2
(|000〉 + |111〉. This constraint of input separability could be stated as

follows:

teleportation : qbit × (qbit ⊗ qbit) ((qbit ⊗ qbit) × qbit

In order to show how such specifications could be conveyed through a
typing system, we introduce a typed quantum functional language, using linear
logic with two products: a tensor product for the general case and a cartesian
product to represent separability constraints. A×B is then a subtype of A⊗B
since separable states are also general states. Thus the cartesian product
provides additional information on the state of a system, while specifying a
constraint for an input to be separable.

3 Terms

The language introduced here is largely inspired from Valiron’s quantum func-
tional language [15]. A quantum program state is a triple [Q, f, M], where:

• M is a term:

M ::= fun P → M | (MM) | if (M ; M ; M) | 〈M, M〉 | U1 M | U2 M |

meas M | Bell M | let x = new M in M | x | 0 | 1

P ::= T | 〈P � P 〉

T ::= x | 〈T, T 〉

with x ranging over V a countable set of variables, and c ranging over
C a set of constants;

• f is a function from V to {1, . . . , n}, the index set of qubits in the memory;

115

Perdrix

• Q is a vector in a vector space C2n

of dimension 2n.

In order to simplify the writing of the reduction rules, pi denotes a variable
x such that f(x) = i. The quantum program state then becomes a pair [Q, M′]
with M ′ = M [pf(x1)/x1] . . . [pf(xn)/xn] if the domain of f is {x1, . . . xn}.

The syntax of terms allows: abstraction and application of functions; con-
ditional expressions and formation of pairs of terms; application of quantum
operations like measurements and unitary transformations; and creation and
initialization of qubits. Patterns are specified as single variables or as pairs
〈P1, P2〉 or 〈T1, T2〉. The diamond (�) is a syntactic way of expressing the con-
straint that an argument must be separable: for instance if the teleportation
function is defined as fun 〈x�〈y, z〉〉 → M , its type is qubit×(qbit⊗qbit) (A,
where A is the type of M .

The entanglement relation of a new qubit relates this qubit with itself.
Since the information about entanglement is stated in the typing rules (5) by
a relation over variable names, the new qubit must be immediately named.
That is why the syntax always gives names to newly created qubits let x =
new M in M .

4 Reduction

Following the approach developed in [15] by Valiron, a call-by-value reduction
system is required to tackle the consequences of no-cloning in the language:
the argument must be evaluated before actually applying a function.

A value is a term V of the following form:

V ::= x | fun P → M | 0 | 1 | 〈V, V 〉

Due to the probabilistic nature of measurement, the reduction system is
probabilistic: state →p state can be applied with probability p.

• Function application:

[Q, (fun x → M) V] →1 [Q, M [V/x]]

If the argument is a pair:

[Q, (fun P → M) V] →1 [Q, M [V/P]]

where the substitution M [V/P] is recursively defined as:

M [〈V1, V2〉/〈P1 � P2〉] = M [V1/P1][V2/P2]

M [〈V1, V2〉/〈T1, T2〉] = M [V1/T1][V2/T2]

• In any case, the argument is evaluated first, before function application,

116

Perdrix

then the function is evaluated:

[Q, N] →p [Q′, N ′]

[Q, MN] →p [Q′, MN ′]

[Q, M] →p [Q′, M ′]

[Q, MV] →p [Q′, M ′V]

• The cases for if :

[Q, if (0; M ; N)] →1 [Q, N]

[Q, if (1; M ; N)] →1 [Q, M]

[Q, P] →p [Q′, P ′]

[Q, if (P ; M ; N)] →p [Q′, if (P ′; M ; N)]

• Measurement of a qubit indexed by i:
For a given qubit i, Q is a superposition of two states, where {|0i〉 , |1i〉}

is the standard basis for qubit i:

Q = α |0i〉 ⊗ Q0 + β |1i〉 ⊗ Q1

Thus:
[Q, meas pi] →|α|2 [|0i〉 ⊗ Q0, pi]

[Q, meas pi] →|β|2 [|1i〉 ⊗ Q1, pi]

• Creation and initialisation of a qubit:
Let i be a fresh qubit index (i /∈ range(f)):

[Q, let x = new 0M] →1 [Q ⊗ |0i〉 , M [pi/x]]

[Q, let x = new 1M] →1 [Q ⊗ |1i〉 , M [pi/x]]

[Q, P] →p [Q′, P ′]

[Q, let x = new P in M] →p [Q′, let x = new P ′ in M]

• The case for one-qubit unitary transformations:
For a given qubit i :

[Q, U1 pi] →1 [U
(i)
1 Q, pi]

where U
(i)
1 is the unitary transformation which applies U1 to qubit i.

• The case for two-qubit unitary transformations:
Given two qubits i, j:

[Q, U2〈pi, pj〉] →1 [U
(i,j)
2 Q, 〈pi, pj〉]

117

Perdrix

5 Types

There is a basic type for classical data (bit) and a basic type for quantum data
(qbit). These types can be combined by operators of linear logic: !A means
that A is duplicable; A (B is the type of a function with an argument of
type A outputting a result of type B. Additionally, two products of types are
allowed, ⊗ and ×: the type of a pair composed of a term of type A and a
term of type B is A ⊗ B or A × B. On duplicable data the two products are
equivalent; on quantum data a type A × B means that the two terms of the
pair are separable.

A ::= bit | !A | A (A | A × A | B

B ::= qbit | B ⊗ B

5.1 Subtyping

Let ≺ be an order relation over types. This ordering relation expresses the
property of linear logic that a duplicable type !A is a subtype of the non-
duplicable type A. Moreover subtyping is also induced by the two different
products: A × B is a subtype of A ⊗ B because a separable state is a special
case of a general state.

A ≺ A

A ≺ B
!A ≺ B

!A ≺ B
!A ≺ !B

A ≺ A′ B ≺ B′

A′
(B ≺ A (B′

A ≺ A′ B ≺ B′

A ⊗ B ≺ A′ ⊗ B′

A ≺ A′ B ≺ B′

A × B ≺ A′ × B′

A × B ≺ A ⊗ B

5.2 Typing Rules

A typing judgment is [p; R↑; R↓; ∆] ` M : A, where [p; R↑; R↓; ∆] is a context,
M a term, and A a type.

The context [p; R↑; R↓; ∆] is composed of:

• a function p which associates with each syntactic position in a term the set
of variables below that position. For instance, consider the following term:
〈〈a, U1 b〉, U2 〈c, d〉〉. Then p(ε) = {a, b, c, d}, p(1) = {c, d}, p(01) = {a}.

• an equivalence relation R↑ over the quantum variables of V. For the free
variables of M , R↑ denotes a superset of the entanglement relation of these
variables before the reduction of M : for any x, y ∈ FV (M), if (x, y) /∈ R↑

118

Perdrix

then x and y are separable before the reduction of M . For bound variables,
R↑ depends on the patterns (see abstraction rule).

• an equivalence relation R↓ over the quantum variables. For the free variables
of M , R↓ is an superset of the entanglement relation of these variables after
the reduction of M . For any x, y ∈ FV (M), if (x, y) /∈ R↓ then x and y are
separable after the reduction of M .

• and a set ∆ denoted by {x1 : A1, . . . , xn : An} where xi’s are variables and
Ai’s are types.

The context [p; R↑; R↓; ∆1, ∆2] is a context [p; R↑; R↓; ∆], where ∆ = ∆1 ∪∆2

and ∆1 ∩ ∆2 = ∅. [p; R↑; R↓; ∆, x : A] means [p; R↑; R↓; ∆, {x : A}]. !∆
contains only variables of duplicable types (x :!A).

In order to illustrate the respective roles of R↑ and R↓ consider the following
examples:

• [p; ∅; ∅; ∅] ` fun 〈x � y〉 → 〈x, y〉 : !(A × B (A × B). Here the pattern
〈x � y〉 impose that (x, y) is not in R↑. Since there is no free variables and
no other pattern, R↑ = ∅ is valid.

• [p; ∅; {(x, y)}∗; x : qbit, y : qbit] ` U2 〈x, y〉 : qbit ⊗ qbit, where R∗ means
the reflexive and transitive closure of R. Here, since (x, y) /∈ R↑, the free
variables x and y are assumed to be separable, but after the reduction
the unitary transformation can create entanglement between x and y, thus
(x, y) ∈ R↓.

The typing rules are:

• Axiom :
If R↑ ⊂ R↓:

A ≺ B
[ε → x; R↑; R↓; ∆, x : A] ` x : B

ax

• Product terms :
FV (M) is the set of free variables in term M .
If ∀x ∈ FV (M), ∀y ∈ FV (N), (x, y) /∈ R↓

1 ∩ R↓
2:

[p1; R
↑; R↓

1; Γ1, !∆] ` M : A [p2; R
↑; R↓

2; Γ2, !∆] ` N : B

[p; R↑; R↓
1 ∩ R↓

2; Γ1, Γ2, !∆] ` 〈M, N〉 : A × B
×term

where p(ε) = p1(ε) ∪ p2(ε), p(0.c) = p1(c), and p(1.c) = p2(c).
Otherwise:

[p1; R
↑; R↓

1; Γ1, !∆] ` M : A [p2; R
↑; R↓

2; Γ2, !∆] ` N : B

[p; R↑; (R↓
1 ∩ R↓

2); Γ1, Γ2, !∆] ` 〈M, N〉 : A ⊗ B
⊗term

where p(ε) = p1(ε) ∪ p2(ε), p(0.c) = p1(c), and p(1.c) = p2(c).

Remark 5.1 According to the rules ×term and ⊗term, the relation ”R↓”

119

Perdrix

of a pair is obtained by intersecting the relations of both elements of the
pair. This construction is illustrated with the following example:

[p1; {(x, y)}∗; {(x, y)}∗; x : qbit] ` x : qbit
ax

[p2; {(x, y)}∗; ∅; y : qbit] ` meas y : qbit×!bit

[p; {(x, y)}∗; ∅; x : qbit, y : qbit] ` 〈x, meas y〉 : qbit × (qbit×!bit)

Even if x and y are initially entangled, the reduction of 〈x, meas y〉 leads
to a state where x and y are separable since y is measured. This informa-
tion of separability is in the right hand side of the tree, thus in order to
transmit the information to the pair, intersection of the two relations must
be done. In other words, a measurement is a ”non local” way of consum-
ing entanglement: acting on only one variable may consume entanglement,
whereas creation of entanglement between two variables is ”local” because
it requires an operation on both variables.

• if term:

[p1; R
↑; R↓

1
; Γ1, !∆] ` P : bit [p2; R

↑; R↓
2
; Γ2, !∆] ` M : A [p3; R

↑; R↓
3
; Γ2, !∆] ` N : A

[p; R↑; R↓
1
∩ (R↓

2
∪ R

↓
3
)∗; Γ1, Γ2, !∆] ` if (P ; M ; N) : A

if

where p(c) = p2(c) ∪ p3(c).

Remark 5.2 Here, contrary to the case of product terms, only one of M
and N will be reduced. Thus a superset of the entanglement relation of
both M and N must be considered, since it is unknown which of them will
actually be reduced: (R↓

2 ∪ R↓
3)

∗ is considered. On the other hand both P
and either M or N will be reduced, so R↓ is R↓

1 ∩ (R↓
2 ∪ R↓

3)
∗

• Application:

[p1;R
↑
1;R

↓
1; Γ1, !∆] ` N : A [p2;R

↑
2;R

↓
2; Γ1, !∆] ` fun P → M : A (B

[p;R↑
1; subs(R↓

2, p1, P); Γ1,Γ2, !∆] ` (fun P → M)N : B
(app

where subs(R↓
2, p1, P) uses the position function p1 to replace in R↓

2 the
variables of the pattern P by the variables of N . The new position function
p is also obtained by replacing in p2 the variables of the pattern P according
to p1.

Moreover, this rule is applicable only if R↓
1 ⊂ subs(R↑

2, p1, P), i.e. entan-
glement and separability of N are maintained in M .

• Abstraction:
If FV (M) ∩ dom(Γ) = ∅:

(P : A)2[p; R↑; R↓; Γ, !∆] ` M : B

[p; R↑; R↓; Γ, !∆] ` fun P → M : !(A (B)
(abs

Otherwise:

120

Perdrix

(P : A)2[p; R↑; R↓; Γ, !∆] ` M : B

[p; R↑; R↓; Γ, !∆] ` fun P → M : A (B
(abs

where the operation 2 introduces the variables of a pattern into the con-
text, while verifying that the relation R↑ agrees with the structure of the
pattern.

2 is defined as follows:

T2[p; R↑; R↓; Γ, !∆, x : A] ` M : B

T2(x : A)2[p; R↑; R↓; Γ, !∆] ` M : B
2var

where T is recursively defined as T = ε | T2(P : A).
If ∀x ∈ V ar(P1), ∀y ∈ V ar(P2), (x, y) ∈ R↑:

T2(P1 : A)2(P2 : B)2[p; R↑; R↓; Γ, !∆,] ` M : C

T2(〈P1, P2〉 : A ⊗ B)2[p; R↑; R↓; Γ, !∆] ` M : C
2ent

If ∀x ∈ V ar(P1), ∀y ∈ V ar(P2), (x, y) /∈ R↑:

T2(P1 : A)2(P2 : B)2[p; R↑; R↓; Γ, !∆,] ` M : C

T2(〈P1 � P2〉 : A × B)2[p; R↑; R↓; Γ, !∆] ` M : C
2sep

• Measurement:

[p; R↑; R↓; ∆] ` M : qbit

[p; R↑; R̃↓; ∆] ` meas M : qbit×!bit
meas

where R̃↓ = R↓ \ {(x, y) | x ∈ FV (M) or y ∈ FV (M)}

[p; R↑; R↓; ∆] ` M : qbit ⊗ qbit

[p; R↑; R̃↓; ∆] ` Bell M : qbit ⊗ qbit×!bit
Bell

where R̃↓ = [(R↓ \{(x, y) | x ∈ FV (M) or y ∈ FV (M)})∪{(u, v) | u, v ∈
FV (M)}]∗.

• Unitary transformations:

[p; R↑; R↓; ∆] ` M : qbit

[p; R↑; R↓; ∆] ` U1 M : qbit
unit1

[p; R↑; R↓; ∆] ` M : qbit ⊗ qbit

[p; R↑; R̃↓; ∆] ` U2 M : qbit ⊗ qbit
unit2

where R̃↓ = (R↓ ∪ {(x, y) | x, y ∈ FV (M)})∗

• Initialization:
If x /∈ dom(!∆, Γ1, Γ2), and ∀y 6= x, (x, y) /∈ R↓

2 and (y, x) /∈ R↓
2:

121

Perdrix

[p1; R
↑
1; R

↓
1; Γ1, !∆] ` M : bit [p2; R

↑
2; R

↓
2; Γ2, !∆, x : qbit] ` N : A

[p2; R
↑
1; R

↓
2; Γ1, Γ2, !∆] ` let x = new M in N : A

new

This rule is applicable only if R↓
1 ⊂ R↑

2.

Definition 5.3 A program [Q, M] is well-typed of type A iff there exist
two equivalence relations R↑ and R↓ and a position function p such that
[p; R↑; R↓; ∆] ` M : A, where ∆ = {x : qbit|x ∈ FV (M)}. In this case,
we write [Q, M] : A.

Example 5.4 Consider

P = fun 〈x � y〉 → 〈x, y〉,

we prove that [Q, P] is well-typed and [Q, P] :!(A × B (A × B):

Here, ∆ = ∅, let R↑ = ∅, the description of p is omitted:

[p; R↑; ∅; x : A] ` x : A
ax

[p; R↑; ∅; y : B] ` y : B
ax

[p; R↑; ∅; y : B, x : A] ` 〈x, y〉 : A × B
×term

(x : A)2[p; R↑; ∅; y : B] ` 〈x, y〉 : A × B
2var

(x : A)2(y : B)2[p; R↑; ∅; ∅] ` 〈x, y〉 : A × B
2var

(〈x � y〉 : A × B)2[p; R↑; ∅; ∅] ` 〈x, y〉 : A × B
2sep

[p; R↑; ∅; ∅] ` fun 〈x � y〉 → 〈x, y〉 : !(A × B (A × B)
(abs

Example 5.5 Consider

P = fun 〈x, y〉 → 〈x, y〉,

we prove that [Q, P] is well-typed and [Q, P] :!(A ⊗ B (A ⊗ B):

Here, ∆ = ∅, let R↑ = {(x, y)}∗:

[p; R↑; {(x, y)}∗; x : A] ` x : A
ax

[p; R↑; {(x, y)}∗; y : B] ` y : B
ax

[p; R↑; {(x, y)}∗; y : B, x : A] ` 〈x, y〉 : A ⊗ B
⊗term

(x : A)2[p; R↑; {(x, y)}∗; y : B] ` 〈x, y〉 : A ⊗ B
2var

(x : A)2(y : B)2[p; R↑; {(x, y)}∗; ∅] ` 〈x, y〉 : A ⊗ B
2var

(〈x, y〉 : A ⊗ B)2[p; R↑; {(x, y)}∗; ∅] ` 〈x, y〉 : A ⊗ B
2ent

[p; R↑; {(x, y)}∗; ∅] ` fun 〈x, y〉 → 〈x, y〉 : !(A ⊗ B (A ⊗ B)
(abs

122

Perdrix

Example 5.6 Consider

P = fun 〈x � 〈y, z〉〉 → 〈U2 〈x, y〉, (fun 〈a, b〉 → a)(meas z)〉,

we prove that [Q, P] is well-typed and [Q, P] :!(qbit × qbit ⊗ qbit (qbit ⊗
qbit × qbit):

Let Q = fun 〈a � b〉 → b be the first projection.

Here, ∆ = ∅, let R↑ = {(y, z)}∗:

T1 :

[p; R↑; {(y, z)}∗; x : qbit] ` x : qbit
ax

[p; R↑; {(y, z)}∗; y : qbit] ` y : qbit
ax

[p; R↑; {(y, z)}∗; x : qbit, y : qbit] ` 〈x, y〉 : qbit ⊗ qbit
⊗term

[p; R↑; {(y, z), (x, y)}∗; x : qbit, y : qbit] ` U2 〈x, y〉 : qbit⊗ qbit
unit2

T2 :

[p; ∅; ∅; a : qbit, b :!bit] ` a : qbit
ax

[p; ∅; ∅; ∅] ` Q : qbit×!bit (qbit
abs

[p; R↑; {(y, z)}∗; z : qbit] ` z : qbit
ax

[p; R↑; ∅; z : qbit] ` meas z : qbit×!bit
meas

[p; R↑; ∅; z : qbit] ` Q (meas z) : qbit
app

T1 T2

[p; R↑; ∅; x : qbit, y : qbit, z : qbit] ` 〈U2 〈x, y〉, Q (meas z)〉 : qbit⊗ qbit × qbit
×term

[p; R↑; ∅; ∅] ` P : !(qubit× qbit ⊗ qbit (qbit⊗ qbit × qbit)
(abs

6 Properties of Quantum Typing

Proofs of the following lemmas are done by structural induction:

Lemma 6.1 If [p; R↑, R↓, ∆] ` M : A and A ≺ B, then [p; R↑, R↓, ∆] ` M :
B;

Lemma 6.2 If [p; R↑, R↓, ∆] ` M : A and Γ ≺ ∆ (where ≺ is naturally
extended), then [p; R↑, R↓, Γ] ` M : A;

Lemma 6.3 If [p; R↑, R↓
1, ∆] ` M : A and R↓

1 ⊂ R↓
2, then there exists A ≺ B

such that [p; R↑, R↓
2, ∆] ` M : B;

Since R↓
1 denotes the separability of the variables after the reduction, with

a weaker relation R↓
2 (R↓

1 ⊂ R↓
2) the term is still typable but with a weaker

type, as it is illustrated in Lemma 6.3.

Lemma 6.4 If [p; R↑
1, R

↓, ∆] ` M : A and R↑
2 ⊂ R↑

1 where R↑
1 and R↑

2 differs
only on free variables of M , then [p; R↑

2, R
↓, ∆] ` M : A;

For the free variables of M , R↑
1 denotes the separability before the reduc-

tion, thus with a stronger relation R↑
2 (R↑

2 ⊂ R↑
1), M is still typable.

123

Perdrix

Conjecture 6.5 (Substitution) If [p; R↑; R↓
1; Γ1, !∆, x : A] ` M : B and

[p; R↑; R↓
2; Γ2, !∆] ` V : A , then [p; R↑; R↓

1 ∩ R↓
2; Γ1, Γ2, !∆] ` M [V/x] : B.

The substitution property is not proved, as a consequence subject reduction
and progress are also conjectured but not proved.

7 Toward quantum types for quantum data structures

The fact that quantum data can be entangled or separable requires additional
specification that is not present in the usual notion of data structures as pro-
posed in [13,15]. An abstracted specification of the entanglement structure
which is present or allowed within quantum data is clearly part of the infor-
mation that has to be conveyed with notions of quantum data structures and
quantum data types. An example given in this paper is the quantum data
structure used by teleportation. This is achieved in this paper by the distinc-
tion between the two kinds of patterns 〈P1, P1〉 and 〈P1 �P2〉 and between the
types A ⊗ B and A × B.

A more elaborate example would be the data used during the execution of
the One Way Quantum Computer [11]: a rectangular array of qubits, where
all qubits are initially entangled with their neighbours, and where the entan-
glement within this quantum data structure is consumed in a stepwise manner
by successive 1-qubit measurements. An interesting special case, which would
at least fit the One Way Quantum Computer, is the family of quantum data
structures corresponding to graph states [4,7]. This will be studied further in
the scope of this work in progress, with the associated notion of types.

Acknowledgements

I would like to thank Philippe Jorrand and Pablo Arrighi for discussions and
comments.

References

[1] S. Bettelli, T. Calarco and L. Serafini, Toward an architecture for quantum

programming, arXiv:cs.PL/0103009 v3, 2003.

[2] V. Danos, E. Kashefi, P. Panangaden The Measurement Calculus , e-print
arXiv:quant-ph/0412135, 2004.

[3] S. J. Gay and R. Nagarajan Communicating quantum processes, Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Jens Palsberg and Martin Abadi (Eds.), POPL 2005, January 12–
14, 2005, pp. 145–157.

[4] M. Hein, J. Eisert and J. H. Briegel, Multi-party entanglement in graph states,
Phys. Rev. A 69, 062311, 2004.

124

http://arxiv.org/abs/cs.PL/0103009
http://arxiv.org/abs/quant-ph/0412135

Perdrix

[5] E. Knill, Conventions for Quantum Pseudocode, LANL report LAUR-96-2724,
1996.

[6] M. Lalire and Ph. Jorrand, A process algebraic approach to concurrent and

distributed quantum computation: operational semantics, Proceedings of the 2nd
International Workshop on Quantum Programming Languages, 2004, pp. 109–
126.

[7] M. Mhalla and S. Perdrix, Complexity of Graph State Preparation,
arXiv:quant-ph/0412071, 2004.

[8] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum

Information, Cambridge University Press, 2000.

[9] S. Perdrix and Ph. Jorrand, Classically-Controlled Quantum Computation,
arXiv:quant-ph/0407008, 2004

[10] S. Perdrix. State Transfer instead of Teleportation in Measurement-based

Quantum Computation, arXiv:quant-ph/0402204, 2004.

[11] R. Raussendorf and H. J. Briegel, A One-Way Quantum Computer, Phys. Rev.
Lett. 86, 5188–5191, 2001.

[12] J.W. Sanders and P. Zuliani: Quantum Programming, Mathematics of Program

Construction, Springer LNCS 1837, 80–99, 2000.

[13] P. Selinger, Towards a Quantum Programming Language, Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[14] P. Shor, Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer, SIAM Journal of Computing 26, pp. 1484–
1509, 1997.

[15] B. Valiron, Quantum Typing, Proceedings of the 2nd International Workshop
on Quantum Programming Languages, 2004 pp. 163–178.

125

http://arxiv.org/abs/quant-ph/0412071
http://arxiv.org/abs/quant-ph/0407008
http://arxiv.org/abs/quant-ph/0402204

	Basic Notions: Separability and Entanglement
	Types for Teleportation
	Terms
	Reduction
	Types
	Subtyping
	Typing Rules

	Properties of Quantum Typing
	Toward quantum types for quantum data structures
	References

