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From reversible to irreversible computations
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Abstract

In this paper we study the relation between reversible and irreversible computation applicable to different
models of computation — here we are considering classical and quantum computation. We develop an
equational theory of reversible computations and an associated theory of irreversible computations which
is obtained by marking some inputs as preinitialised heap and some outputs as garbage to be thrown away
at the end of the computation. We present three laws which apply to irreversible classical and quantum
computations and show that von Neumann’s measurement postulate is derivable from them. We discuss
the question whether these laws are complete for irreversible quantum computations.
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1 Introduction

Abstract models of computation like λ-calculus, or even more abstractly Cartesian

closed categories, are based on irreversible processes; indeed Cartesian products in-

troduce projections which are irreversible. In contrast, in Physics the more funda-

mental notions describe processes in closed systems where every action is reversible,

e.g. Newtonian Mechanics, Maxwellian electrodynamics and quantum mechanics fit

into this pattern. Open systems, which allow irreversible processes, are a derived

notion — they can be considered as a subsystem of a closed system. Indeed, an

irreversible process can be understood in terms of a reversible one with a partic-

ular assignment of boundary conditions, e.g. Feynman’s and Wheeler’s theory of

absorbers [10].
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Our plan is to follow the physical idea that reversibility is the fundamental

notion, and irreversibility is a derived notion to model computation. Reversibility

has been investigated by Bennett in his classical paper [3], where he shows that

reversible computation has the same power as irreversible computation. It has

also since been shown that, in terms of complexity, reversible space is the same as

deterministic space [5]. Recently, Abramsky investigated the notion of reversible

computation from a structural perspective [1].

We build on previous work of the 2nd author with Jonathan Grattage on compil-

ing QML [2]. QML’s design is based on an analogy between classical and quantum

computation. To make this precise we introduce two models of computation: FCC

for Finite Classical Computation and FQC for Finite Quantum Computation. Both

are based on a notion of reversible computation (bijections vs. unitary operators)

and introduce irreversible computations as a derived notion; by marking certain

inputs as preinitialised heap, and certain outputs as garbage which is thrown away

(i.e. measured, in the quantum case) at the end of the computation. We also intro-

duce the notion of extensional equivalence of two irreversible computations which

are given by the associated functions on finite sets in the classical case, and by an

embedding into the category of superoperators on finite dimensional Hilbert spaces

in the quantum case. While the choice of extensional equality in the two examples

is very natural, it is not parametric in the notion of reversible computation. We

would like to obtain the notion of irreversible computation as a consequence of our

choice of reversible computation.

We approach this goal by introducing three laws which state which algebraic

properties a notion of irreversible computation derived from reversible computation

must satisfy. Both FCC and FQC satisfy these laws and we show that they are

sufficient to derive von Neumann’s measurement postulate, which in this setting

corresponds to the statement that measuring twice is the same as measuring once.

A natural question which arises is whether our laws are sufficient to characterise the

equivalence of quantum circuits, at least for definable circuits (i.e. classical circuits

viewed as quantum circuits).

Our work here is related to other, more sophisticated, categorical models of

quantum computing such as Coecke’s Kindergarten Quantum mechanics [4] or Peter

Selinger’s dagger-complete categories [8].
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2 Reversible computation

We model reversible computations by a groupoid FxCR, that is for every morphism

ψ ∈ FxCR(a, b) there is an inverse ψ−1 ∈ FxCR(b, a) such that ψ,ψ−1 are an

isomorphism. We assume that the groupoid is strict, i.e. that any isomorphic

objects are equal. This entails that FxCR(a, b) is empty, if a 6= b, consequently we
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denote homsets by FxCR a = FxCR(a, a). We also assume that FxCR has a strict

monoidal structure I,⊗ which corresponds to parallel composition of computations

and a special object of Booleans,denoted by N2. Since we are only interested in

objects which can be generated from I,N2,⊗ we can use natural numbers a ∈ N to

denote the object 2a. Hence we have that I = 0, N2 = 1 and a ⊗ b = a + b. We

write [a] = {i ∈ N | i < a} for the initial segment of N.

We characterise the morphisms, i.e. circuits, in FxCRa inductively and also

give the inverses:

wires Given a bijection on initial segments φ : [a] ' [a] we write wiresφ ∈ FxCR a

for the associated rewiring. For example, the rewiring denoted pictorially as

x0 x1
x1 x2
x2 x0

would have φ(0) = 2, φ(1) = 0, and φ(2) = 1. The existence of wires follows

from the strict monoidal structure, with the identity (ida) being a special case of

wires.

sequential composition combines two circuits of equal size (i.e. with the same

number of wires) in sequence. That is, given ψ, φ ∈ FxCRa we construct φ ◦ψ ∈

FxCRa.

ψ φ

we can construct the inverse using φ−1 and ψ−1 to give ψ−1 ◦ φ−1.

φ−1 ψ−1

parallel composition combines any two circuits in parallel, and can be thought

of as the tensor product. The size of the new circuit constructed is equal to the

sum of the sizes of the original two circuits. That is, given ψ ∈ FxCRa and

φ ∈ FxCRb we can construct ψ ⊗ φ ∈ FxCR(a⊗ b).

ψ

φ

again we can construct the inverse using ψ−1 and φ−1, this time to give ψ−1⊗φ−1.

ψ−1

φ−1

rotations count as any 1 “bit” operations. That is a rotation is any element of

FxCR1, and in the case of classical reversible circuits the only rotation available

is the Not operation. So we have ¬ ∈ FxCR1 with ¬−1 = ¬. In the quantum

case this would be any single qubit rotation.(i.e. a unitary operation in U(2))
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conditionals use a control wire to decide whether a computation should be per-

formed. That is, given φ ∈ FxCRa we can construct ida | φ ∈ FxCR(N2 ⊗ a).

•

φ

the inverse is again constructed using φ−1 giving ida | φ−1.

•

φ−1

For ease of notation we shall also introduce the conditional that acts when the

control wire is set to true. This conditional can be constructed from the condi-

tional already given, and the Not operation (or rotation) as follows:

φ

≡ Not • Not

φ

which for φ ∈ FxCRa can be denoted φ | ida ∈ FxCR(N2 ⊗ a). This naturally

leads us to a choice operator, such that given two computations of the same size,

the value of the control wire is used to govern which computation is done. That

is, given ψ, φ ∈ FxCRa we can construct ψ | φ ∈ FxCR(N2 ⊗ a), as follow:

•

ψ φ

the inverse is once again given by ψ−1 and φ−1, and constructed as ψ−1 | φ−1:

•

ψ−1 φ−1

The laws governing wires, sequential composition and parallel composition follow

from the categorical infrastructure. Additionally, we assume that the following

equalities hold for conditionals:

Firstly, we have for f, g, h ∈ FxCRa that (f | g) ◦ (N2 ⊗ h) = f ◦ h | g ◦ h

pictorially this can be shown as:

•

h f g

= •

h f h g

Secondly, we have for f, g, h ∈ FxCRa that (N2⊗h)◦(f | g) = h◦f | h◦g pictorially

this can be shown as:

•

f g h

= •

f h g h
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and thirdly, we have that for f, f ′, g, g′ ∈ FxCRa that (f | g) ◦ (f ′ | g′) = (f ◦ f ′) |

(g ◦ g′) again the pictorial representation for this would be:

• •

f ′ g′ f g

= •

f ′ f g′ g

We also have distributivity over ⊗ and |, such that given f, g ∈ FxCRa and

h ∈ FxCRb we have that (f | g) ⊗ h = (f ⊗ h) | (g ⊗ h). This can again be given

pictorially.

•

f g

h

= •

f g

h h

using this last axiom it is possible to simplify the first two to just be that (h | h) =

(id1 ⊗ h) or pictorially:

•

h h

=

h

The next axiom that we introduce is that ida | ida = idN2⊗a, and can be given

(in it’s most simple form) pictorially as:

•

ida

=

ida

Moreover, we have for f, g ∈ FxCRa that (¬⊗ ida) ◦ (f | g) = (g | f) ◦ (¬⊗ ida),

or pictorially that would be:

• Not

f g

= Not •

g f

Examples of FxCR categories

There are two obvious computational examples of FxCR categories: firstly there

is the FCCR category of classical reversible circuits, and secondly there is the

FQCR of quantum circuits. The difference mainly being in the rotations that are

available. The extensional equality is given by interpreting circuits as permutations

on [a] in the classical case and as unitary operators on a-dimensional Hilbert spaces

in the quantum case. Note that FCCR ↪→ FQCR and this embedding preserves

extensional equality, because the unitary operators which can be obtained from

definable circuits contain only 0 and 1 and hence can be obtained by embedding

the corresponding permutation.
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Bipermutative categories

A symmetric bimonoidal category (C, Z,⊕, I,⊗) is a category with two symmetric

monoidal structures (Z,⊕) and (I,⊗) and distributivity isomorphisms d ∈ A⊗(B⊕

C) ' A⊗B⊕A⊗C and d′ ∈ (A⊕B)⊗C) ' A⊗C⊕B⊗C subject to a number of

coherence laws [6]. A bipermutative category is a symmetric bimonoidal category

where all isomorphisms apart from c⊕ ∈ A⊕B ' B ⊕A and c⊗ ∈ A⊗B ' B ⊗A

are identities. There are still a number of coherence laws to be satisfied such as:

A⊗ (B ⊕C)

A⊗c⊕

= (A⊗B) ⊕ (A⊗ C)

c⊕

A⊗ (C ⊕B) = (A⊗ C) ⊕ (A⊗B)

and

A⊗ (B ⊕C)

c⊗

= (A⊗B) ⊕ (A⊗ C)

c⊗⊕c⊗

(B ⊕ C) ⊗A = (B ⊗A) ⊕ (C ⊗A)

Our models for FCCR and FQCR give rise to bipermutative categories, where

N2 = I ⊕ I and all the laws stated above hold in all bipermutative categories.

Hence, our development could be stated more abstractly in terms of bipermutative

categories.

3 Irreversible computation

We derive a notion of irreversible computations from the given notion of reversible

computation by defining the category FxCIr, where every morphism of the category

represents an irreversible computation, but is in fact of the form ψ ′ = (h, g, ψ) where

h is a set of heap inputs, g is a set of garbage outputs, and ψ is the underlying

reversible computation. So a morphism in FxCIr(a, b) can be given as a morphism

in FxCR((a ⊗ h), (b ⊗ g)) with the requirement that (a⊗ h) = (b ⊗ g). Pictorially

we can represent an irreversible computation (h, g, ψ) as the reversible computation

ψ where we mark heap and garbage explicitly:

a
ψ

b

h g

We also have that for any ψ ∈ FxCRa there is an equivalent circuit ψ̂ ∈

FxCIr(a, a). More precisely this is given by the predicate:

ψ ∈ FxCRa

ψ̂ ∈ FxCIr(a, a)

such that ψ̂ = (0, 0, ψ), i.e. there is no heap or garbage.

We note that we can define sequential composition for irreversible computations:

given α = (hα, gα, φα) ∈ FxCIr(a, b) and β = (hβ , gβ , φβ) ∈ FxCIr(b, c) we define
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β ◦ α ∈ FxCIr(a, c), as

a
φα φβ

c

hα
gβ

hβ gα

The identity can be obtained by lifting the reversible identity idFxC
Ir

a = ̂
idFxC

R

a .

It is straightforward to verify that FxCIr thus constructed is a category by using the

monoidal identities in the underlying category of reversible computations. Moreover,

FxCIr inherits the monoidal structure from FxCR, e.g. given α = (hα, gα, φα) ∈

FxCIr(a, b) and β = (hβ , gβ , φβ) ∈ FxCIr(c, d), we obtain α⊗β ∈ FxCIr(a⊗c, b⊗d)

as:

a
φα

b

c d

hα φβ

gα

hβ gβ

The neutral element of the tensor, i.e. the empty circuit, can be obtained by lifting

IFxC
Ir

= ̂
IFxC

R

.

Examples of FxCIr categories

We can now extend our two example FxCR categories to FxCIr categories. We

shall call these FCC for the category of finite classical computations, and FQC

for finite quantum computations. The extensional equality in the classical case is

given by interpreting morphisms as functions on finite sets: (h, g, φ) ∈ FCC(a, b)

is interpreted as πg ◦ JφK ◦ (0h,−) ∈ [a] → [b], where JφK ∈ [a ⊗ h] → [b ⊗ g]

is the associated permutation, (0h,−) ∈ [a] → [a ⊗ h] initialises the heap and

πg ∈ [b⊗ g] → b projects out the garbage.

In the quantum case we interpret circuits as superoperators (e.g. see [7], or [9] for

an implementation in Haskell). Superoperators are morphisms on density operators,

which are positive operators on the a-dimensional Hilbert space. A superoperator

f ∈ Super(a, b) is a linear function mapping density operators on a to density

operators on b, which preserve the trace and are stable under ⊗. Analogously to the

classical case, we interpret (h, g, φ) ∈ FQC(a, b) as trg ◦ JφK ◦ 0h ⊗− ∈ Super(a, b),

where JφK ∈ Super(h ⊗ a, g ⊗ b) is the superoperator associated to the unitary

operator given by interpreting the reversible circuit φ. 0h ⊗ − ∈ Super(a, a ⊗ h)

initialises the heap and trg ∈ Super(g⊗ b, b) is a partial trace which traces out the

garbage.

4 Equivalence

In the reversible case the equality of definable circuits is the same in the classical

case and in the quantum case, but this doesn’t hold for irreversible computations.

For example, in the classical case the following two circuits would be equivalent:

•

Not

≡
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However, this equivalence does not hold when we move into the category of finite

quantum computations FQC. This is because in quantum computation the control

wire (or qubit) can become entangled with the target wire (qubit). However there

is another similar equivalence that holds in FQC:

• •

Not

Not

≡ •

Not

This is akin to von Neumann’s measurement postulate. So, how now can we char-

acterise the equivalences which should always hold?

We have developed three laws to try and characterise these equivalences, that

hold in both FCC and FQC. The first law is that of garbage collection. It states

that if a circuit can be reduced into two smaller circuits such that one part of the

circuit only acts on heap inputs and on garbage outputs, then that part of the

circuit can be removed.

A f B

H g G

≡ A f B

The second law is of the uselessness of garbage processing. This states that if

a circuit can be reduced into two smaller circuits such that one part of the circuit

only has an effect on garbage outputs, then that part can be removed.

A
f

B

H g G

≡ A
f

B

H G

this can be alternately stated as saying that if the only outputs of (part of) a circuit

are garbage outputs, then this is equivalent to just having garbage.

g ≡

and similarly we can now simplify the first law to state that a wire that simply

connects the heap to the garbage is equivalent to having nothing.

≡ •

The third law is of the uselessness of heap preprocessing. This states that if a

circuit can be reduced into two smaller circuits such that one part of the circuit

only has effect on heap inputs, and the effect on the zero vector is the identity, then

that part can be removed.

if h0 = 0 then

A
f

B

H h G

≡ A
f

B

H G

An alternate notation for this would again be to state that if (part of) a circuit

only has heap inputs, and its effect on the zero vector is the identity, then this is
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equivalent to just having a heap.

if h0 = 0 then

h ≡

We can already use these laws to give a proof of the measurement postulate.

The first step is to show the equivalence of

• •

Not

Not

≡ •

• Not •

Not Not

This is simple as you will notice there is no heap or garbage, so we know that

the circuits are in FQCR, and in fact only use the elements from FCCR. Thus

equivalence can be shown by looking at the truth tables, which are the same.

The third controlled not is eliminated using the second law:

•

• Not •

Not Not

≡ •

• Not

Not

The controlled Not operations preserve the zero vector, so we can eliminate the

first one using the third law:

•

• Not

Not

≡ •

Not

Finally the bottom wire can be removed by use of the first law:

•

Not

≡ •

Not

5 Conclusions and further work

We have sketched here the first steps toward a theory of irreversible computation

based on reversible computation and we have shown that our laws for irreversible

computations are sufficient to derive von Neumann’s measurement postulate. Apart

from this we currently have more questions than answers. One question is, are there

equalities between definable irreversible quantum circuits which are not derivable

from our laws? It has been proposed that this question may be answered by trans-

lating our formalism into Selinger’s dagger-complete categories [8]. Recent work by

Coecke shows that this category is not equationally definable in terms of initiali-

sations and measurements, however it is not clear at the moment whether such a

counterexample is definable in our sense.

We are investigating whether we could state the whole development more ab-

stractly using only symmetric, strictly bimonoidal, categories as the base for the
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notion of reversible computations. Currently, it is not clear how to state abstractly

the precondition required by the third law; that a circuit is 0-preserving. An alter-

native would be to drop this condition and to assume that a computation can be

carried out, provided a correct initialisation. Interestingly, our laws would then be

symmetric.

Finally, we would like to answer the question whether our laws are complete for

quantum computation, that is whether we can characterise the equality of definable

quantum circuits just by the three laws presented here.
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