An involution on the nilpotent commutator of a nilpotent matrix

Anthony Iarrobino
Department of Mathematics, Northeastern University, Boston, MA 02115, USA..

Talk at
"Combinatorial Algebra meets Algebraic Combinatorics" Dalhousie University

January 19, 2008
(Revised February 6, 2008)
Work joint with Roberta Basili.

Abstract

We consider the irreducible variety \mathcal{N}_{B} of nilpotent elements of the commutator \mathcal{C}_{B} of a nilpotent $n \times n$ Jordan matix B having Jordan blocks given by the partition P of n, over a field K. Fix a homomorphism: $\pi: \mathcal{C}_{B} \rightarrow M_{B}$, where M_{B} is a product of matrix algebras over K, with kernel the Jacobson radical \mathfrak{J}_{B} of \mathcal{C}_{B}. The inverse image of the subvariety U_{r} corresponding to strictly upper triangular matrices, is a maximal nilpotent subalgebra \mathcal{U}_{B} of \mathcal{C}_{B}. R. Basili gave a specific homomorphism π, and parametrization of \mathcal{U}_{B}, that has been used by several. We describe an involution on \mathcal{U}_{B}, that is a generalized transpose. This involution underlies some of the symmetries we reported last year, in matrices related to the vanishing of elements of A^{k}, A generic in \mathcal{U}_{B}.

We pose several questions related to the open one of determining the Jordan partition of the generic element of \mathcal{N}_{B}.

CONTENTS

I. What is $Q(P)$ - maximal nilpotent orbit in \mathcal{C}_{B} ?
A. The morphism $\mathcal{C}_{B} \rightarrow M_{B}$ (semisimple part).
B. The maximal nilpotent subalgebra U_{B} of \mathcal{C}_{B}
II. An involution ι on \mathcal{C}_{B}.that restricts to U_{B}.
A. An involution on block matrices.
B. Extending ι to \mathcal{C}_{B} for $P=\left(p^{a}, q^{b}\right)$.
C. The vanishing-order matrix $\operatorname{Pow}(P)$; the matrix $\operatorname{Powxe}(P)$
D. Constructing Powxe (P) - an example.
E. $\operatorname{Pow}(P)$ and a basis for $\left(U_{B}\right)^{i}$.
III. What is $Q_{S}(P)$ - maximal nilpotent orbit in $\pi^{-1}\left(M_{S}(B)\right)$?
A. Lifting nilpotent multi-orbits $M_{S}(B) \subset M_{B}$.
B. The partition $Q_{S}(P)$.
C. Questions: the involution ι and $Q_{S}(P)$.

Acknowledgment. We thank J. Emsalem D. King, and J. Weyman for helpful comments. We benefited from discussions of [HW1, HW2], some with M. Boij; and at "CA-AC 08 " with T. Košir and J. Weyman.

Introduction. Several groups are studying similar problems.

- V. Baranovsky, R. Basili, and A. Premet.

Let $R=K\{x, y\}$, pow.series; K alg. closed. $V=K^{n}$;
$N P_{n}(K)=$ pairs (A, B) of nilpotent $n \times n$ matrices, $[A, B]=0$.
$N P^{\prime}{ }_{n}(K)=$ pairs having a cyclic vector $v \in V$.
Fibration: $\tau: N P^{\prime}{ }_{n}(K) \times V \quad \rightarrow \operatorname{Hilb}^{n} R:$
$\tau:(A, B, v) \rightarrow K[A, B]$, Artinian algebra.
Briançon's Thm. (1977). Reproved/extended by M. Granger (1983)
$\operatorname{Hilb}^{n} K[x, y]$ is irred, over field K, char $K=0$. (I.-also char $K>n$).
Thm. (Baranovsky, 2001)
$\operatorname{Hilb}^{n}(R)$ irreducible $\Leftrightarrow N P_{n}(K)$ irreducible.
$\therefore N P_{n}(K)$ irred. char $K=0$ or char $K=p>n$.
Thm. [Basili 2003], char $K=0$ or $p>n / 2$; [Pre] all alg. cld K :
$N P_{n}(K)$ is irred (proven directly). $\therefore \operatorname{Hilb}^{n}(R)$ irred. $\forall K$.

- R. Basili-I.: Goal: Understand $\tau^{-1} Z_{H}, H$ a fixed Hilbert function.

Let $\mathcal{N}_{B}=\{$ nilpotent $A \mid[A, B]=0\}$. Subgoal: Understand $Q(P)=$ largest Jordan block partition of $A \in \mathcal{N}_{B}$.

Thm. $Q(P)=P$ iff parts of P differ pairwise by ≥ 2.
Thm. $A \in \mathcal{N}_{B}$ and \exists cyclic $v \Rightarrow$ general $A+t B$ has partition $P(H)$, $(P(H)=$ partition giving lengths of the rows of bar graph of H.

- T. Košir, P. Oblak: Goal: Understand $Q(P)$. Motivation: PDE.

Thm. (P. Oblak, 2006): Finds index of $Q(P)$. (Later also by BI).
Thm. (T. Košir and P. Oblak): $Q(Q(P))=Q(P)(Q(P)$ "stable").

- G. McNinch: Pencils of nilpotent matrices (char p Lie groups).

Thm. $A \in \mathcal{N}_{B} \Rightarrow A, B \in$ Jacobson radical of $A+t B$ for t generic (char $K=0$ or most p, no need for cyclic v.)

- D.I. Panyushev: Goal: Understand Premet, (from Lie theory).

Thm. Determines "self large" orbits for any Lie group \mathcal{G}, char $K=0$. (In special case $G=g l(n)$, "self large" $=$ stable). Pencils, char $K=0$.

- T. Harima and J. Watanabe. Strong Lefschetz properties (SLP) of $x \in \mathcal{A}$, Artin algebra. Def x has SLP if $m_{x^{i}}$ has max rank for $H, i>0$.

Thm. \mathcal{A} any graded $\operatorname{Artinian} x \in \mathcal{A}_{1}$ generic $\Rightarrow \mathrm{x}$ has a strong lefschetz property, under suitable (strong) conditions.

Goal of present work:
A. Describe an involution ι on the fibres of π.
B. Contribute to understanding algebra structure of \mathcal{U}_{B}, maximal nilpotent subalgebra of \mathcal{N}_{B} : we give bases for $\left(U_{B}\right)^{i}$.
C. Generalize the problem of finding $Q(P)$.

1 What is $Q(P)$, maximal nilpotent orbit in \mathcal{C}_{B} ?

Let $K=$ algebraically closed field, $M_{n}(K)=n \times n$ matrices.
$\mathcal{N}(n, K)=\left\{\right.$ nilpotent $\left.A \in M_{n}(K)\right\}$.
Fix $B \in \mathcal{N}(n, K)$ in Jordan form, of partition $P=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$.
$\mathcal{C}_{B}=\mathcal{A} \in \mathcal{M}(n, k) \mid[A, B]=0 . \quad N_{B}=\mathcal{C}_{B} \cap \mathcal{N}(n, K)$.
Problem 1.1. Find $\mathcal{Q}(P)=\left\{\right.$ Jordan partitions of $\left.A \in \mathcal{N}_{B}\right\}$.
Thm 1.2. \mathcal{N}_{B} is irreducible. $\mathcal{Q}(P)$ has a maximum, $Q(P)$.

Ex 1.3. $P=(4)$, so B is regular (single Jordan block).

$$
B=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 0 & a & b \\
0 & 0 & 0 & a \\
0 & 0 & 0 & 0
\end{array}\right)
$$

When $a \neq 0, A^{3} \neq 0$ and $P(A)=(4)$.
When $a=0, b \neq 0, A^{3}=0, P(A)=(2,2)$
When $a=b=0, c \neq 0$, then $P(A)=(2,1,1)$.
When $a=b=c=0$ then $P(A)=(1,1,1,1)$.
$(3,1)$ cannot occur for $P(A), A \in \mathcal{N}_{B}, P(B)=(4)$.

1.1 The morphism $\pi: \mathcal{C}_{B} \rightarrow M_{B}$. (semisimple part)

R. Basili [Basili 2000] using [Tur, Ait] parametrized \mathcal{N}_{B} :

Ex 1.4. Let $P=(3,3,2), B=J_{P}$. Then $A \in \mathcal{C}_{B}$ satisfies:

$$
A=\left(\begin{array}{ccc|ccc|cc}
\underline{a_{11}^{1}} & a_{11}^{2} & a_{11}^{3} & \underline{a_{12}^{1}} & a_{12}^{2} & a_{12}^{3} & a_{13}^{1} & a_{13}^{2} \\
0 & a_{11}^{1} & a_{11}^{2} & 0 & a_{12}^{1} & a_{12}^{2} & 0 & a_{13}^{1} \\
0 & 0 & a_{11}^{1} & 0 & 0 & a_{12}^{1} & 0 & 0 \\
\hline \underline{a_{21}^{1}} & a_{21}^{2} & a_{21}^{3} & \underline{a_{22}^{1}} & a_{22}^{2} & a_{22}^{3} & a_{23}^{1} & a_{23}^{2} \\
0 & a_{21}^{1} & a_{21}^{2} & 0 & a_{22}^{1} & a_{22}^{2} & 0 & a_{23}^{1} \\
0 & 0 & a_{21}^{1} & 0 & 0 & a_{22}^{1} & 0 & 0 \\
\hline 0 & a_{31}^{2} & a_{31}^{3} & 0 & a_{32}^{2} & a_{32}^{3} & \frac{\alpha_{33}^{1}}{1} & a_{33}^{2} \\
0 & 0 & a_{31}^{2} & 0 & 0 & a_{32}^{2} & 0 & \alpha_{33}^{1}
\end{array}\right)
$$

with entries in the ring $\mathbb{Z}\left[a_{11}^{1}, \ldots, a_{33}^{2}\right]$ in 21 variables. Let
$\mathfrak{J}=$ Jacobson rad. of $\mathcal{C}_{B}, M_{B}=\mathcal{C}(B) / \mathfrak{J}$ semisimple quotient.
$\operatorname{Set} \mathcal{A}(3)=\left(\begin{array}{ll}a_{11}^{1} & a_{12}^{1} \\ a_{21}^{1} & a_{22}^{1}\end{array}\right), \quad \mathcal{A}(2)=\left(\alpha_{33}^{1}\right)$,
Morphism: $\pi: \mathcal{C}_{B} \rightarrow M_{B}: A \rightarrow(\mathcal{A}(3), \mathcal{A}(2))$.
Here $\mathcal{U}_{B}=\pi^{-1}$ (strictly upper triangular 2×2 matrices, 0).

1.2 Maximal nilpotent subalgebra \mathcal{U}_{B} of \mathcal{C}_{B}.

Let the partition $P=\left(p_{1}^{r_{1}}, \ldots, p_{s}^{r_{s}}\right), p_{1}>\cdots>p_{s}$.
$M_{B}=M_{r_{1}}(K) \times \cdots \times M_{r_{s}}(K)$,
$N_{r}(B)=N_{r_{1}}(K) \times \cdots \times N_{r_{s}}(K)$. We have $\mathcal{N}_{B}=\pi^{-1}\left(N_{r}(B)\right)$.
$U_{r}(B)=U_{r_{1}}(K) \times \cdots \times U_{r_{s}}(K)$. Let $\mathcal{U}_{B}=\pi^{-1}\left(U_{r}(B)\right)$.
Lemma. $\mathcal{U}_{B}=$ a maximal nilpotent subalgebra of \mathcal{C}_{B}.
Def. Digraph $\mathcal{D}(A)$ of a matrix $A \in M_{n}(K)$: Directed graph:
Vertices $=\{1,2, \ldots n\} ;$ An arrow from i to j iff $A_{i j} \neq 0$.
Lemma. For A generic in $\mathcal{U}_{B}, \mathcal{D}(A)$ has no loops. Also

$$
\forall k \in \mathbf{N}, \forall i, j \mid 1 \leq i, j \leq n,\left(A^{k}\right)_{i j}=0 \Rightarrow\left(A^{k+1}\right)_{i j}=0
$$

Question. Is the rank of $A^{k}, k=1,2, \ldots$ an invariant of $\mathcal{D}(P)$? Is this rank the same as that for a generic matrix of zeros and variables with the same digraph [Pol, KnZe]?

Thm.(P. Oblak): Yes, for $\min \left\{k \mid A^{k}=0\right\}$: index of $Q(P)$.
P. Oblak determined this index [Ob1].

Thm [BI1, Pan]. $Q(P)=P \Leftrightarrow$ parts differ pairwise by ≥ 2.
(BI: P "stable" if $Q(P)=P$. Panyushev: P "self large")
Thm.(T. Kosir and P. Oblak)[KO]: $Q(Q(P))=Q(P)$.
Proof: Show $K[A, B]$ is Gorenstein if $A \in \mathcal{N}_{B}$ is generic.
Ex 1.5. $P=(3,1)$. Choose A generic in $\mathcal{U}(B)=\pi^{-1}(0,0)$.

$$
B=\left(\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right), \quad A=\left(\begin{array}{ccc|c}
0 & a & b & f \\
0 & 0 & a & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & d & 0
\end{array}\right) .
$$

Then $A^{2}=\alpha E_{13}, \alpha=a^{2}+d f$. If $\alpha \neq 0, P(A)=(3,1)$
When $\alpha=0, P(A)=(2,2)$ or $(2,1,1)$ or $(1,1,1,1)$.

Ex 1.6. $P=(3,1,1) . \mathcal{U}_{B}=\pi^{-1}\left(0,\left(\begin{array}{cc}0 & c \\ 0 & 0\end{array}\right)\right)$

$$
B=\left(\begin{array}{lll|ll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad A=\left(\begin{array}{ccc|cc}
0 & a & b & f & g \\
0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & e & 0 & c \\
0 & 0 & d & 0 & 0
\end{array}\right) .
$$

Here $A^{3}=c d f E_{13}$ so $Q(P)=(4,1)$.
Also, $A^{3}=0$ iff $P(A) \leq(3,1,1)$,
Note: the \mathcal{C}_{B} orbit of $(3,1,1)$ in \mathcal{U}_{B} is reducible, though its \mathcal{C}_{B} orbit in \mathcal{N}_{B} is irreducible.

We have

$$
A^{2}=\left(\begin{array}{ccc|cc}
0 & 0 & \alpha & 0 & c f \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & c d & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{ccc|cc}
0 & 0 & c d f & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad A^{4}=0 .
$$

where $\alpha=a^{2}+d g+e f$.
When $c d f \neq 0$ we have $P(A)=(4,1)=Q(P)$
When $c d f=0$ but $c d$ or $e f$ or $\alpha \neq 0$ we have rank $A^{2}=1$, and $P(A)=(3,2)$ if $\operatorname{rank} A=3$ or $(3,1,1)$ if $\operatorname{rank} A=2$.

When $A^{2}=0, P(A)=(2,2,1),(2,1,1,1)$ or $(1,1,1,1,1)$.

$$
\mathcal{Q}(P)=\overline{(4,1)}=\{(4,1),(3,2),(3,1,1),(2,1,1,1),(1,1,1,1,1)\} .
$$

2 An involution ι on \mathcal{C}_{B} that restricts to U_{B}

2.1 An involution on partitioned matrices

Ex 2.1. The involution $\sigma_{s}(2,3)$ takes $M_{5}(R) \rightarrow M_{5}(R)$:

$$
\left(\begin{array}{cc|ccc}
a & b & \alpha_{4}^{\prime} & \alpha_{5}^{\prime} & \alpha_{6}^{\prime} \\
c & d & \alpha_{1}^{\prime} & \alpha_{2}^{\prime} & \alpha_{3}^{\prime} \\
\hline \alpha_{3} & \alpha_{6} & e & f & g \\
\alpha_{2} & \alpha_{5} & h & i & j \\
\alpha_{1} & \alpha_{4} & k & l & m
\end{array}\right) \text { to }\left(\begin{array}{cc|ccc}
d & b & \alpha_{4} & \alpha_{5} & \alpha_{6} \\
c & a & \alpha_{1} & \alpha_{2} & \alpha_{3} \\
\hline \alpha_{3}^{\prime} & \alpha_{6}^{\prime} & m & j & g \\
\alpha_{2}^{\prime} & \alpha_{5}^{\prime} & l & i & f \\
\alpha_{1}^{\prime} & \alpha_{4}^{\prime} & k & h & e
\end{array}\right) .
$$

Definition 2.2. The action of $\sigma_{s}(a, b)$ on $M_{a+b}(R)$:
i. reflects the entries in the $a \times a$ block at the upper left, and in the $b \times b$ block in the lower right, about their non-main diagonals.
ii. Sends the $b \times a$ block in the lower left into the $a \times b$ block at upper right by transpose followed by reversing the order of rows, then reversing the order of columns.
2.2 The involution ι for $\mathcal{C}_{B}, P=\left(p^{a}, q^{b}\right)$
. We let $P=\left(p^{a}, q^{b}\right)=(p, \ldots, p ; q, \ldots, q), p>q$. Let
$t=(a+b), n=a p+b q$. Let $M=\left(\begin{array}{cc}M(1,1) & M(1,2) \\ M(2,1) & M(2,2)\end{array}\right)$.
Replace the entries of $M \in M_{a+b}(K)$ by small blocks, forming $M^{\prime} \in M_{n}(K)$.. These blocks are $M(1,1), p \times p$ in the upper left $M ; M(2,1), p \times q$ in the upper right; $M(2,1), q \times p$ in the lower left; and $M(2,2), q \times q$ in the lower right. The small blocks have the circulant form found in $A \in \mathcal{U}_{B}$:
i. The matrices that comprise the entries of $M(2,1)$ have the first $p-q$ columns zero, followed by a circulant $q \times q$ subblock $C(2,1)_{u v}, 1 \leq u \leq b, 1 \leq v \leq a$.
ii. The matrices that comprise the entries of $M(1,2)$ have the last $p-q$ rows zero, preceded by a $q \times q$ matrix $B(1,2)_{u v}, 1 \leq u \leq a, 1 \leq v \leq b$.

Note: We use that circulant $q \times q$ matrices commute.

Def. For $P=\left(p^{a}, q^{b}\right)$, We define $\sigma_{s, P}$ on $\mathcal{C}_{B}, B=J_{P}$.
a. apply the involution $\sigma_{s}(a, b)$ to M, permuting the small blocks. However, in applying $\sigma_{s}(a, b)$ we must
b. replace each $q \times p$ entry $M(2,1)_{u v}=\left(0, C_{u v}\right), 1 \leq u \leq$ $a, 1 \leq v \leq b$ of M_{21} by the $p \times q$ matrix $\binom{C_{u v}}{0}$, and
c. replace each $p \times q$ entry $M(1,2)_{u v}=\binom{B_{u v}}{0} 1 \leq u \leq$ $b, 1 \leq v \leq a$ of M_{21} by the $q \times p$ matrix $\left(0, B_{u v}\right)$.

This definition extends to $\iota=\sigma_{s, P}: \mathcal{C}_{B} \rightarrow \mathcal{C}_{B}$ for all P. Let $K\left[X_{P}\right]$ the ring of variables, entries of $A_{\text {gen }} \in \mathcal{C}_{B}$; define $\sigma: K\left[X_{P}\right] \rightarrow K\left[X_{P}\right]$ by the action of $\sigma_{s, P}$ on $A_{\text {gen }}$.

Lem 2.3. We have for $U, V \in \mathcal{C}_{B}, \iota=$ general transpose:

$$
\begin{equation*}
\iota(U V)=\iota(V) \cdot \iota(U) ; \quad U \in \mathcal{U}_{B} \Rightarrow \iota(U) \in \mathcal{U}_{B} \tag{2.1}
\end{equation*}
$$

We have for $U, V \in$ subring $K\left[A_{\text {gen }}\right] \subset \mathcal{C}_{B}$:

$$
\begin{equation*}
\iota(U)=\sigma(U), \text { and } \iota(U V)=\iota(U) \iota(V) . \tag{2.2}
\end{equation*}
$$

and similarly for $K[A], A$ generic in \mathcal{U}_{B}.

Ex 2.4. Let $P=\left(3^{2}, 1^{3}\right)$. Then a generic $A \in C_{B}$ satisfies

$$
\left.\begin{array}{c}
A=\left(\begin{array}{ccc|ccc|ccc}
\alpha_{11} & a_{1} & a_{2} & d & d_{2} & d_{3} & f_{4} & f_{5} & f_{6} \\
0 & \alpha_{11} & a_{1} & 0 & d & d_{2} & 0 & 0 & 0 \\
0 & 0 & \alpha_{11} & 0 & 0 & d & 0 & 0 & 0 \\
\hline \alpha_{21} & c & c_{2} & \alpha_{22} & a_{3} & a_{4} & f & f_{2} & f_{3} \\
0 & \alpha_{21} & c & 0 & \alpha_{22} & a_{3} & 0 & 0 & 0 \\
0 & 0 & \alpha_{21} & 0 & 0 & \alpha_{22} & 0 & 0 & 0 \\
\hline 0 & 0 & e_{3} & 0 & 0 & e_{6} & \beta_{11} & s & s_{2} \\
0 & 0 & e_{2} & 0 & 0 & e_{5} & \beta_{21} & \beta_{22} & t \\
0 & 0 & e & 0 & 0 & e_{4} & \beta_{31} & \beta_{32} & \beta_{33}
\end{array}\right), \\
\pi(A)=\left(\begin{array}{ll}
\alpha_{11} & d \\
\alpha_{21} & \alpha_{22}
\end{array}\right),\left(\begin{array}{ll}
\beta_{11} & s \\
\beta_{21} & \beta_{22} \\
s_{2} \\
\beta_{31} & \beta_{32} \\
\beta_{33}
\end{array}\right)
\end{array}\right) .
$$

Then $\sigma_{s, P}$ reflects $\pi(A)$ about the non-main diagonals. and

$$
\sigma_{s, P}: a_{1} \rightarrow a_{3}, a_{2} \rightarrow a_{4} ; e \rightarrow f, e_{i} \rightarrow f_{i}, 2 \leq i \leq 6
$$

2.3 The vanishing-order matrix $\operatorname{Pow}(P)$; the matrix $\operatorname{Powxe}(P)$

Def. $X_{P}=\left\{x_{i j} \mid\right.$ both $A_{i j} \neq 0, A_{i j}^{2}=0, A$ generic in $\left.\mathcal{U}_{B}\right\} / \bmod$ Hankel relations \}. (i.e. We identify equal circulant entries)
$M_{X_{1}}(P)=n \times n$ matrix with
$M_{X_{1}}(P)_{i j}=\left\{\begin{array}{l}x_{i j} \in X_{P} \text { if } A \text { generic in } \mathcal{U}_{B} \text { has entry } A_{i j} \in X_{P} \\ 0 \text { otherwise. }\end{array}\right.$
$\operatorname{Powxe}(P)=M_{X_{1}}+\left(M_{X_{1}}\right)^{2}+\cdots$.
$\operatorname{Powx}(P)_{i j}=$ highest degree term of $\operatorname{Powxe}(P)_{i j}$,
$\operatorname{Pow}(P)$ integer matrix, $\operatorname{Pow}(P)_{i j}=$ degree of $\operatorname{Powx}(P)_{i j}$.

Ex 2.5. $P=(3)$,

$$
M_{X_{1}}=\left(\begin{array}{ccc}
0 & a & 0 \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right), \quad \operatorname{Powxe}(P)=\left(\begin{array}{ccc}
0 & a & a^{2} \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right)
$$

For $P=(3,1,1)$, the generic $A \in U(B)$ and $\operatorname{Powxe}(P)$ are

$$
\left.\begin{array}{c}
A=\left(\begin{array}{ccc|cc}
0 & \underline{a} & b & \underline{f} & g \\
0 & 0 & \underline{a} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & e & 0 & \underline{c} \\
0 & 0 & \underline{d} & 0 & 0
\end{array}\right) . \\
\operatorname{Powxe}(P)=\left(\begin{array}{ccccc}
0 & a & c d f & +a^{2} & f \\
c
\end{array}\right) \tag{2.5}\\
0
\end{array}\right)
$$

Here $\sigma: d \rightarrow f, e \rightarrow g$ and $\iota(\operatorname{Powxe}(P)=\sigma(\operatorname{Powxe}(P))$.

Also $\sigma\left(c d f+a^{2}\right)=c d f+a^{2}$ - entry fixed by ι;
and ι takes $\binom{c d}{d}$ to $\left(\begin{array}{ll}f & c f\end{array}\right)=\sigma\left(\begin{array}{ll}d & c d\end{array}\right)$,

2.4 Constructing Powxe (P), an example.

Ex 2.6. $\operatorname{For} P=\left(3^{2}, 1^{3}\right) . \quad A \in \mathcal{U}_{B}$ and $\operatorname{Pow}=\operatorname{Pow}(P)$ are
$A=\left(\begin{array}{ccc|ccc|ccc}0 & a_{1} & a_{2} & d & d_{2} & d_{3} & f_{4} & f_{5} & f_{6} \\ 0 & 0 & a_{1} & 0 & d & d_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d & 0 & 0 & 0 \\ \hline 0 & c & c_{2} & 0 & a_{3} & a_{4} & f & f_{2} & f_{3} \\ 0 & 0 & c & 0 & 0 & a_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & e_{3} & 0 & 0 & e_{6} & 0 & s & s_{2} \\ 0 & 0 & e_{2} & 0 & 0 & e_{5} & 0 & 0 & t \\ 0 & 0 & e & 0 & 0 & e_{4} & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll|lll|lll}0 & 2 & 5 & 1 & 3 & 6 & 2 & 3 & 4 \\ 0 & 0 & 2 & 0 & 1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 4 & 0 & 2 & 5 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 3 & 0 & 0 & 4 & 0 & 1 & 2 \\ 0 & 0 & 2 & 0 & 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0\end{array}\right)$
Here the variables X_{1} of $M_{X_{1}}$ are $\{c, d, e, f, s, t\}$ and correspond to the entries 1 of $\operatorname{Pow}(P)$.

We have for $P=\left(3^{2}, 1^{3}\right)=(3,3,1,1,1)$, $\operatorname{Powxe}(P)$ is
$\left(\begin{array}{ccc|ccc|ccc}0 & c d & \text { defst }+c^{2} d^{2} & d & c d^{2} & \underline{d^{2} e f s t}+c^{2} d^{3} & d f & d f s & d f s t \\ 0 & 0 & c d & 0 & d & c d^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d & 0 & 0 & 0 \\ \hline 0 & c & e f s t+c^{2} d & 0 & c d & d e f s t+c^{2} d^{2} & f & f s & f s t \\ 0 & 0 & c & 0 & 0 & c d & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & e s t & 0 & 0 & d e s t & 0 & s & s t \\ 0 & 0 & e t & 0 & 0 & d e t & 0 & 0 & t \\ 0 & 0 & e & 0 & 0 & d e & 0 & 0 & 0\end{array}\right)$.

Here $Q(P)$ has two parts (by an R. Basili result, as $P=$ $p^{a}, q^{b}, p>q+1$ has $r_{P}=2$); the highest nonzero power of a generic $A \in \mathcal{U}_{B}$ is $A^{6}=\underline{d^{2} e f \text { st }} E_{16}$, hence $Q(P)=(7,2)$.

Here Powxe (P) shows the symmety

$$
\iota(\operatorname{Powxe}(P))=\sigma(\operatorname{Powxe}(P),
$$

and is evidently simply constructed from $M_{X_{1}} \in \mathcal{U}_{B}$. [BI2].

2.5 $\operatorname{Pow}(P)$ and a basis for $\mathcal{U}_{B}{ }^{i}$.

${ }^{1}$ Let $P=\left(p_{1}^{r_{1}}, \ldots, p_{t}^{r_{t}}\right), p_{1}>\cdots>p_{t}$, and let A be a generic element of \mathcal{U}_{B}. If the entry $A_{i j} \neq 0$ and $A_{i j} \neq A_{i-1, j-1}$ we denote it by $x_{i j}$, and the set of all such by X_{P} (one variable for each small Hankel diagonal). Let $s_{i}=r_{1}+\cdots+r_{i+1}$. Considering $\pi: \mathcal{C}_{B} \rightarrow M_{B}, \operatorname{dim}_{K}\left(U_{B}\right)=\# X_{P}$ satisfies

$$
\begin{equation*}
\# X_{P}=\sum_{i}\left(i r_{i}\left(r_{i}+2 s_{i}\right)-r_{i}\left(\frac{r_{i}+1}{2}\right)\right) \tag{2.6}
\end{equation*}
$$

Let $S_{P}=\left\{i \mid r_{i}>0\right\}$, and $\forall i \in S_{P}, j_{i}=r_{i}+\max \left\{r_{i-1}, r_{i+1}\right\}$ (jump index), $s=\sum r_{i}$, and recall $t=\# S_{P}$. We denote by

$$
\begin{equation*}
X_{k}=\left\{x_{i j} \in X_{P} \mid A_{i j}^{k} \neq 0 \text { but } A_{i j}^{k+1}=0\right\} \tag{2.7}
\end{equation*}
$$

Thus, X_{k} comprise the distinct variables from X_{P} corresponding to entries k of $\operatorname{Pow}(P)$. We have [BI2, Sec. 3.1]

$$
\begin{equation*}
\# X_{1}=s+2(t-1)-\#\left\{i \mid j_{i}>r_{i}\right\} \tag{2.8}
\end{equation*}
$$

[^0]We let $\mathcal{B}_{P}=I+\mathcal{U}_{B}$, and filter it by the ideals

$$
\mathcal{B}_{P} \supset U_{B} \supset U_{B}^{2} \supset \cdots \supset U_{B}^{e_{P}} \supset 0
$$

Here $e_{P}=i(Q(P))-1, i(Q(P))=$ index of $Q(P)$, the largest part. We set $U_{B}^{0}=\mathcal{B}_{P}$. Denote by $E=\left\langle\left\{e_{i j}, 1 \leq i, j \leq n\right\}\right\rangle$, the n^{2}-dim vector space. For $x_{i j} \in X_{P}$, let $v_{i j} \in E$ satisfy $v_{i j}=\sum^{\prime} e_{u v}$ where \sum^{\prime} is over $\left\{u v \mid A_{u v}=x_{i j}\right\}$. Let $V_{k}=$ $\left\{v_{i j}, \mid x_{i j} \in X_{k}\right\}$, and $\left\langle V_{k}\right\rangle \subset E$ their span, $V=\sum_{k=1}^{e_{P}} V_{k}$.

Thm. We have the internal direct sums
A. $\mathcal{B}_{P}=\oplus_{k=0}^{e_{P}}\left\langle V_{i}\right\rangle \cong \oplus_{k=0}^{e_{P}} U_{B}{ }^{k} / U_{B}{ }^{k+1} ;$
B. for $i \geq 0,\left(U_{B}\right)^{i}=\oplus_{k \geq i}\left\langle V_{k}\right\rangle$.
C. Also, for $1 \leq i \leq e_{P}, \quad 0:\left(U_{B}\right)^{i}=\left(U_{B}\right)^{e_{P}-i}$.

Proof Outline. We write $e_{i j}$ also for the corresponding element of U_{B}, provided $x_{i j} \in X_{P}$. (So $U_{B} \subset V$). Let $u \in U_{B}{ }^{k} \subset E$ have nonzero component on some $e_{i j}$ (with $x_{i j} \in X_{k}$). Then we achieve $v_{i j}$ as a product of k elements $v_{1} \times \cdots \times v_{k}, v_{i} \in V_{1}$.

Ex 2.7. $P=(3,11)$.

$$
A=\left(\begin{array}{ccc|cc}
0 & \underline{x_{12}} & x_{13} & \underline{x_{14}} & x_{15} \\
0 & 0 & \underline{x_{12}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & x_{43} & 0 & \underline{x_{45}} \\
0 & 0 & \underline{x_{53}} & 0 & 0
\end{array}\right) .
$$

Here $v_{12}=e_{12}+e_{23}, v_{33}=e_{33}, \ldots, v_{53}=e_{53}$.

$$
\begin{aligned}
& U_{B} / U_{B}^{2}=V_{1}=\left\langle v_{12}, v_{14}, v_{45}, v_{53}\right\rangle . \\
& U_{B}^{2} / U_{B}^{3}=V_{2}=\left\langle v_{15}, v_{43}\right\rangle \text { and } U_{B}^{3}=V_{3}=\left\langle v_{13}\right\rangle .
\end{aligned}
$$

The action of ι extends to V, and each V_{i} is ι-invariant.

Remark. There is symmetry here and for some other (not all) P in the " U_{B}-Hilbert functions", when stratified by large matrix blocks", corresponding to $3,(3,1), 1$. Here $H_{U_{B}}\left(V_{1}\right)=$ $(1,2,1), H_{U_{B}}\left(V_{2}\right)=(0,2,0)$.

Problem. Let $A_{i}=$ generic element of $U_{B}{ }^{i}$. We have, evidently, rank $A_{i} \geq \operatorname{rank} A^{i}$. Compare these ranks.

3 What is $Q_{S}(P)$ - maximal nilpotent orbit in $\pi^{-1}\left(M_{S}(B)\right) ?$
3.1 Nilpotent multi-orbits $M_{S}(B) \subset M(B)$.

Definition 3.1. Let $P=\left(p_{1}^{r_{1}}, \ldots, p_{k}^{r_{k}}\right), p_{1}>\ldots>p_{k}$. Let $\left\langle r_{i}\right\rangle=$ POS of partitions of r_{i}. Let $S=\left(S_{1}, \ldots, S_{k}\right), S_{i} \in$ $r_{i}, 1 \leq i \leq k$. Let $\mathfrak{S}(P)=\left\{S \in\left\langle r_{1}\right\rangle \times \cdots \times\left\langle r_{k}\right\rangle\right\}$.
$M_{S}(B)=$ nilpotent multi-orbit in $M_{r_{1}}(K) \times \cdots \times M_{r_{k}}(K)$ determined by S.

Since $M_{S}(B)$ is irreducible and $\pi^{-1}\left(M_{S}(B)\right)$ is fibred over $M_{S}(B)$ by an affine space isomorphic to the Jacobson radical \mathfrak{J} of \mathcal{C}_{B}, we have $\pi^{-1}\left(M_{S}(B)\right)$ is irreducible.

We denote by $Q_{S}(B)$ the partition giving the Jordan blocks of a generic element of $\pi^{-1}\left(M_{S}(B)\right)$.

Ex 3.2. When $S=\left(\left(r_{1}\right), \ldots,\left(r_{k}\right)\right)$ (each S_{i} a single Jordan block), then $M_{S}(B)=M(B), Q_{S}(B)=Q(B)$.

$$
\text { Let } 0=S_{0}=\left(\left(1^{r_{1}}\right), \ldots,\left(1^{r_{k}}\right)\right) \text { then } M_{S}(B)=\{(0, \ldots, 0)\}
$$

and $Q_{0}(B)$ is the maximal partition for an element of \mathfrak{J}.
Observation. When the distinct parts of P differ by two or more, then $Q_{0}(P)=P$; otherwise, $Q_{0}(P) \neq P$.

For $P=\left(2,1^{3}\right), S=\left((1),\left(1^{3}\right)\right)$, then $Q_{0}(B)=(3,1,1) \neq P$.
Problem: Find $Q_{S}(B)$ for each S. Interpolates between $Q(P)$, and the generic orbit for $\mathcal{A} \in \mathfrak{J}$, the Jacobson radical.

Lem 3.3 (Lifting). i. Let $\sigma \in G l_{r_{1}}(K) \times \cdots \times G l_{r_{k}}(K)$ and $M, M^{\prime} \in M(B)$, and let $A \in \mathcal{C}_{B}$ with $\pi(A)=M$. Then there is a unit $\sigma^{\prime} \in \mathcal{C}_{B}$ such that $\pi\left(\sigma^{\prime}(A)\right)=A^{\prime}$.
ii. $Q_{S}(P)=P(A)$ for A generic in $\pi^{-1}\left(J_{S_{1}}, \ldots, J_{S_{k}}\right)$.

That is, in finding $Q_{S}(P)$ we may assume that $\pi(A)$ has components each in Jordan block form.

3.2 The partition $Q_{S}(P)$

Def: For a fixed P denote by $\mathfrak{Q}(P)$ the POS

$$
\mathfrak{Q}(P)=\left\{Q_{S}(P) \quad \forall S \in\left(\mathfrak{P}\left(r_{1}\right) \times \cdots \times \mathfrak{P}\left(r_{k}\right)\right)\right\},
$$

Lem 3.4. : $S \rightarrow Q_{S}(P)$ is a map of POS: $\mathfrak{S}(P) \rightarrow \mathfrak{Q}(P)$.
For a partition $\left(S_{1}=\left(s_{11}, \ldots, s_{1 t}\right)\right.$, we let $m\left(S_{1}\right)=\left(m s_{11}, \ldots m s_{1 t}\right)$.
Ex 3.5 (Observation). Let $P=\left(m^{a}\right)=(m, \ldots, m)$, and let S_{1} be a partition of (a). Then $Q_{S_{1}}(P)=m\left(S_{1}\right)$.

Ex 3.6 (Observation). $\left[Q_{S}(P)\right.$ for hooks $]$ Let $P=\left(p, 1^{b}\right) \mid$ $p>1$. Then the map $S \rightarrow Q_{S}(P): \mathfrak{S} \rightarrow \mathfrak{Q}(P)$, is an isomorphism of lattices.
$Q_{0}(P)=P$ if $p \geq 3 ; \quad Q_{0}(P)=\left(3,1^{b-1}\right)$ if $p=2$.
Let $S=((1), R), T \in \mathcal{P}(B)$. Then $Q_{S}(P)$ is obtained by "adding" T to $Q_{0}(P)$: add $T_{i}-1$ to $Q_{0}(P)_{i}, i=1,2, \ldots$ until the sum n is attained.
$\operatorname{Ex} P=\left(2,1^{4}\right)\left(\right.$ see Ex 3.7B). $Q_{0}(P)=(3,1,1) . S=(2,2)$

$$
Q_{S}(P)=(2,2)+(3,1,1,1)=(3+2-1,1+2-1)=(4,2)
$$

Ex 3.7. Hooks, $p=2$.
A. $\quad P=\left(2,1^{3}\right) ; \quad \mathfrak{S}=\langle 1\rangle \times\langle 3\rangle$.
$Q_{S}(P)$
S
(5)
(3)
$(4,1)$
$(2,1)$
$(3,1,1)$
$(1,1,1)$
B. $\quad P=\left(2,1^{4}\right) ; \quad \mathfrak{S}=\langle 1\rangle \times\langle 4\rangle$.
$Q_{S}(P)$
S
(6)
(4)
$(5,1) \quad(4,2) \quad(3,1) \quad(2,2)$
$(4,1,1)$
$(2,1,1)$
$\left(3,1^{3}\right)$
$\left(1^{4}\right)$

Ex 3.8. Hook: $p=3 . \quad P=\left(3,1^{4}\right) ; \quad \mathfrak{S}=\langle 1\rangle \times\langle 4\rangle$.
$Q_{S}(P)$ S
$(6,1)$
\longleftarrow
$(5,1,1) \quad(4$,
$(4,1,1,1)$
\longleftarrow
$(3,1)$
$(2,2)$

Ex 3.9. $\quad P=\left(2^{2}, 1^{3}\right) ; \quad \mathfrak{S}=\langle 2\rangle \times\langle 3\rangle$.

$$
Q_{S}(P) \quad S
$$

(7) \longleftarrow
$(2) \times(3)$
$(5,2) \quad \longleftarrow \quad(1,1) \times(3) \quad(2) \times(2,1)$
$(4,3) \quad \longleftarrow \quad(1,1) \times(2,1)$
$(4,2,1) \longleftarrow$
(2) $\times(1,1,1)$
$(3,3,1) \longleftarrow$
$(1,1) \times(1,1,1)$
$\mathfrak{S}(P) \rightarrow \mathfrak{Q}(P)$ is not an isomorphism of POS.
$((1,1) \times(2,1)$ and $(2) \times(1,1,1)$ are incomparable in $\mathfrak{S}(P)$.

3.3 Questions: the involution ι and $Q_{S}(P)$.

a. To what extent is $Q_{S}(P)$ an invariant of the digraph $\mathcal{D}(A)$, or digraph wih involution ι, for A generic in $U_{S}(B)$?
b. What other invariants of P are steps toward $Q_{S}(P)$?
c. Fix P. The condition of A being in $\pi^{-1}\left(J_{r_{1}}, \ldots, J_{r_{k}}\right)$ leads to a different digraph-with-involution \mathcal{D}^{\prime} than \mathcal{D} for A generic in \mathcal{U}_{B}. But the lengths of longest paths from $i \rightarrow j$ are unchanged, as the matrix $M_{X_{1}}$ is in this fibre.

Is the S. Poljak calculation of partitions for the generic matrices of digraphs $\mathcal{D}, \mathcal{D}^{\prime}$ the same? And what is their relation to $Q(P)$?
d. Can the ranks of A^{k}, A generic in \mathcal{U}_{B} be concluded from those of certain powers (or powers and sums) of $M_{X_{1}}$?
e. Fix $S=\left(S_{1}, \ldots, S_{k}\right)$. By regarding the intersection of $X_{1}(P)$ with $\pi^{-1}\left(J_{S_{1}}, \ldots, J_{S_{k}}\right)$, one can construct variables
$X_{1}(S)$ and matrices $M_{X_{1}(S)}$. Can the ranks of powers of generic elements of the same fibres, be figured from the ranks of powers and sums of $M_{X_{1}(S)}$?

References

[Bar2001] V. Baranovsky: The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), no. 1, 3-8.
[Basili 2000] R. Basili: On the irreducibility of varieties of commuting matrices, J. Pure Appl. Algebra 149(2) (2000), 107-120.
[Basili 2003] : On the irreducibility of commuting varieties of nilpotent matrices. J. Algebra 268 (2003), no. 1, 58-80.
___ and A. Iarrobino: Pairs of commuting nilpotent matrices, and Hilbert functions, preprint, 2007, ArXiv math.AC: 0709.2304.
[BI2] \qquad
\qquad : An involution on \mathcal{N}_{B}, the nilpotent commutator of a nilpotent Jordan matrix B, preprint, July 31,2007 . (being revised, 2008).
[I1]
A. Iarrobino : Associated Graded Algebra of a Gorenstein Artin Algebra, Memoirs Amer. Math. Society,

Vol 107 \#514, (1994), Amer. Math. Soc., Providence.
[KO] T. Košir and P. Oblak: A note on commuting pairs of nilpotent matrices, preprint, 2007, ArXiv Math.AC/0712.2813.
[KnZe] H. Knight and A. Zelevinsky: Representations of Quivers of Type A and the Multisegment Duality, Advances in Math. 117 \#2 (1996), 273-293.
M. Neubauer and D. Saltman: Two-generated commutative subalgebras of $M_{n} F$, J. Algebra 164 (1994), 545-562.
[NSe] \qquad and B.A. Sethuraman: Commuting pairs in the centralizers of 2-regular matrices, J. Algebra 214 (1999), 174-181.
[Ob1] P. Oblak: The upper bound for the index of nilpotency for a matrix commuting with a given nilpotent matrix, Linear and Multilinear Algebra (electronically published 9/2007). Slightly revised in ArXiv: math.AC/0701561.
[Pan] D. I. Panyushev: Two results on the centralizers of nilpotent elements, preprint, 2007, to appear, JPAA.
[Pol] S. Poljak: Maximum Rank of Powers of a Matrix of Given Pattern, Proc. A.M.S., 106 \#4 (1989), 11371144.
[Pre] A. Premet: Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653-683.
[Tur, Ait] H.W. Turnbull, A.C. Aitken: An introduction to the theory of canonical matrices Dover, New York, 1961.
[HW1] T. Harima and J. Watanabe: The commutator algebra of a nilpotent matrix and an application to the theory of commutative Artinian algebras, preprint, (2005, revised 2007), to appear, J. Algebra.
[HW2] ___ and The central simple modules of Artinian Gorenstein algebras, J. Pure and Applied Algebra 210(2) (2007), 447-463.

[^0]: ${ }^{1}$ This section, an algebraic interpretation of some of the results in [BI2], was inspired by our discussions at the 'CA meets AC' conference January 08 with J. Weyman and T. Koŝir.

