An involution on the nilpotent commutator of a nilpotent matrix

Anthony Iarrobino

Department of Mathematics, Northeastern University, Boston, MA 02115, USA..

Talk at

"Combinatorial Algebra meets Algebraic Combinatorics"

Dalhousie University

January 19, 2008

(Revised February 6, 2008)

Work joint with Roberta Basili.

Abstract

We consider the irreducible variety \mathcal{N}_B of nilpotent elements of the commutator \mathcal{C}_B of a nilpotent $n \times n$ Jordan matix B having Jordan blocks given by the partition P of n, over a field K. Fix a homomorphism: $\pi : \mathcal{C}_B \to M_B$, where M_B is a product of matrix algebras over K, with kernel the Jacobson radical \mathfrak{J}_B of \mathcal{C}_B . The inverse image of the subvariety U_r corresponding to strictly upper triangular matrices, is a maximal nilpotent subalgebra \mathcal{U}_B of \mathcal{C}_B . R. Basili gave a specific homomorphism π , and parametrization of \mathcal{U}_B , that has been used by several. We describe an involution on \mathcal{U}_B , that is a generalized transpose. This involution underlies some of the symmetries we reported last year, in matrices related to the vanishing of elements of A^k , A generic in \mathcal{U}_B .

We pose several questions related to the open one of determining the Jordan partition of the generic element of \mathcal{N}_B .

CONTENTS

- **I.** What is Q(P) maximal nilpotent orbit in C_B ?
 - A. The morphism $\mathcal{C}_B \to M_B$ (semisimple part).
 - B. The maximal nilpotent subalgebra U_B of \mathcal{C}_B
- **II.** An involution ι on \mathcal{C}_B that restricts to U_B .
 - A. An involution on block matrices.
 - B. Extending ι to \mathcal{C}_B for $P = (p^a, q^b)$.
 - C. The vanishing-order matrix Pow(P); the matrix Powxe(P)
 - D. Constructing Powxe(P) an example.
 - E. Pow(P) and a basis for $(U_B)^i$.
- **III.** What is $Q_S(P)$ maximal nilpotent orbit in $\pi^{-1}(M_S(B))$?
 - A. Lifting nilpotent multi-orbits $M_S(B) \subset M_B$.
 - B. The partition $Q_S(P)$.
 - C. Questions: the involution ι and $Q_S(P)$.

Acknowledgment. We thank J. Emsalem D. King, and J. Weyman for helpful comments. We benefited from discussions of [HW1, HW2], some with M. Boij; and at "CA-AC 08" with T. Košir and J. Weyman. Introduction. Several groups are studying similar problems.

• V. Baranovsky, R. Basili, and A. Premet.

Let $R = K\{x, y\}$, pow.series; K alg. closed. $V = K^n$;

 $NP_n(K) =$ pairs (A, B) of nilpotent $n \times n$ matrices, [A, B] = 0.

 $NP'_n(K)$ = pairs having a cyclic vector $v \in V$.

Fibration: $\tau : NP'_n(K) \times V \longrightarrow Hilb^n R$:

 $\tau: (A, B, v) \to K[A, B]$, Artinian algebra.

Briançon's Thm. (1977). Reproved/extended by M. Granger (1983) HilbⁿK[x, y] is irred, over field K, char K = 0. (I.-also char K > n).

Thm. (Baranovsky, 2001)

 $\operatorname{Hilb}^{n}(R)$ irreducible $\Leftrightarrow NP_{n}(K)$ irreducible.

 $\therefore NP_n(K)$ irred. char K = 0 or char K = p > n.

Thm. [Basili 2003], char K = 0 or p > n/2; [Pre] all alg. cld K:

 $NP_n(K)$ is irred (proven directly). \therefore Hilbⁿ(R) irred. $\forall K$.

• R. Basili-I.: Goal: Understand $\tau^{-1}Z_H$, H a fixed Hilbert function.

Let $\mathcal{N}_B = \{ \text{ nilpotent } A \mid [A, B] = 0 \}$. Subgoal: Understand Q(P) =largest Jordan block partition of $A \in \mathcal{N}_B$.

Thm. Q(P) = P iff parts of P differ pairwise by ≥ 2 .

Thm. $A \in \mathcal{N}_B$ and \exists cyclic $v \Rightarrow$ general A + tB has partition P(H),

(P(H) = partition giving lengths of the rows of bar graph of H.)

T. Košir, P. Oblak: Goal: Understand Q(P). Motivation: PDE.
Thm. (P. Oblak, 2006): Finds index of Q(P). (Later also by BI).
Thm. (T. Košir and P. Oblak): Q(Q(P)) = Q(P) (Q(P) "stable").

• G. McNinch: Pencils of nilpotent matrices (char p Lie groups).

Thm. $A \in \mathcal{N}_B \Rightarrow A, B \in$ Jacobson radical of A + tB for t generic (char K = 0 or most p, no need for cyclic v.)

• D.I. Panyushev: Goal: Understand Premet, (from Lie theory).

Thm. Determines "self large" orbits for any Lie group \mathcal{G} , char K = 0. (In special case G = gl(n), "self large" = stable). Pencils, char K = 0.

• T. Harima and J. Watanabe. Strong Lefschetz properties (SLP) of $x \in \mathcal{A}$, Artin algebra. Def x has SLP if m_{x^i} has max rank for H, i > 0. Thm. \mathcal{A} any graded Artinian $x \in \mathcal{A}_1$ generic \Rightarrow x has a strong lefschetz property, under suitable (strong) conditions.

• • •

Goal of present work:

- A. Describe an involution ι on the fibres of π .
- B. Contribute to understanding algebra structure of \mathcal{U}_B , maximal nilpotent subalgebra of \mathcal{N}_B : we give bases for $(U_B)^i$.
- C. Generalize the problem of finding Q(P).

1 What is Q(P), maximal nilpotent orbit in C_B ?

Let K = algebraically closed field, $M_n(K) = n \times n$ matrices. $\mathcal{N}(n, K) = \{ \text{nilpotent } A \in M_n(K) \}.$ Fix $B \in \mathcal{N}(n, K)$ in Jordan form, of partition $P = (\lambda_1, \dots, \lambda_t).$ $\mathcal{C}_B = \mathcal{A} \in \mathcal{M}(n, k) \mid [A, B] = 0.$ $N_B = \mathcal{C}_B \cap \mathcal{N}(n, K).$ **Problem 1.1.** Find $\mathcal{Q}(P) = \{ \text{Jordan partitions of } A \in \mathcal{N}_B \}.$

Thm 1.2. \mathcal{N}_B is irreducible. $\mathcal{Q}(P)$ has a maximum, Q(P).

Ex 1.3. P = (4), so B is regular (single Jordan block). $B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & a & b & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{pmatrix}$ When $a \neq 0, A^3 \neq 0$ and P(A) = (4). When $a = 0, b \neq 0, A^3 = 0, P(A) = (2, 2)$ When $a = b = 0, c \neq 0$, then P(A) = (2, 1, 1). When a = b = c = 0 then P(A) = (1, 1, 1, 1). (3, 1) cannot occur for $P(A), A \in \mathcal{N}_B, P(B) = (4)$.

1.1 The morphism $\pi : C_B \to M_B$. (semisimple part)

R. Basili [Basili 2000] using [Tur, Ait] parametrized \mathcal{N}_B :

Ex 1.4. Let
$$P = (3, 3, 2), B = J_P$$
. Then $A \in \mathcal{C}_B$ satisfies:

	(a_{11}^1	a_{11}^2	a_{11}^3	a_{12}^1	a_{12}^2	a_{12}^3	a_{13}^1	a_{13}^2		
		0	a_{11}^1	a_{11}^2	0	a_{12}^1	a_{12}^2	0	a_{13}^1		
		0	0	a_{11}^1	0	0	a_{12}^1	0	0		
A =		a_{21}^1	a_{21}^2	a_{21}^3	$\underline{a_{22}^1}$	a_{22}^2	a_{22}^3	a_{23}^1	a_{23}^2		
		0	a_{21}^1	a_{21}^2	0	a_{22}^1	a_{22}^2	0	a_{23}^1		
		0	0	a_{21}^1	0	0	a_{22}^1	0	0		
				0	a_{31}^2	a_{31}^3	0	a_{32}^2	a_{32}^3	α_{33}^1	a_{33}^2
		0	0	a_{31}^2	0	0	a_{32}^2	0	α_{33}^1 /		

with entries in the ring $\mathbb{Z}[a_{11}^1, \ldots, a_{33}^2]$ in 21 variables. Let

 $\mathfrak{J} = \text{Jacobson rad. of } \mathcal{C}_B, \ M_B = \mathcal{C}(B)/\mathfrak{J} \text{ semisimple quotient.}$ Set $\mathcal{A}(3) = \begin{pmatrix} a_{11}^1 & a_{12}^1 \\ a_{21}^1 & a_{22}^1 \end{pmatrix}, \quad \mathcal{A}(2) = (\alpha_{33}^1),$

Morphism: $\pi : \mathcal{C}_B \to M_B : A \to (\mathcal{A}(3), \mathcal{A}(2)).$

Here $\mathcal{U}_B = \pi^{-1}$ (strictly upper triangular 2 × 2 matrices , 0).

1.2 Maximal nilpotent subalgebra \mathcal{U}_B of \mathcal{C}_B .

Let the partition
$$P = (p_1^{r_1}, \dots, p_s^{r_s}), p_1 > \dots > p_s.$$

 $M_B = M_{r_1}(K) \times \dots \times M_{r_s}(K),$
 $N_r(B) = N_{r_1}(K) \times \dots \times N_{r_s}(K).$ We have $\mathcal{N}_B = \pi^{-1}(N_r(B)).$
 $U_r(B) = U_{r_1}(K) \times \dots \times U_{r_s}(K).$ Let $\mathcal{U}_B = \pi^{-1}(U_r(B)).$

Lemma. \mathcal{U}_B = a maximal nilpotent subalgebra of \mathcal{C}_B .

Def. Digraph $\mathcal{D}(A)$ of a matrix $A \in M_n(K)$: Directed graph:

Vertices = $\{1, 2, ..., n\}$; An arrow from *i* to *j* iff $A_{ij} \neq 0$.

Lemma. For A generic in \mathcal{U}_B , $\mathcal{D}(A)$ has no loops. Also

$$\forall k \in \mathbf{N}, \forall i, j \mid 1 \le i, j \le n, (A^k)_{ij} = 0 \Rightarrow (A^{k+1})_{ij} = 0.$$

Question. Is the rank of A^k , k = 1, 2, ... an invariant of $\mathcal{D}(P)$? Is this rank the same as that for a generic matrix of zeros and variables with the same digraph [Pol, KnZe]? Thm.(P. Oblak): Yes, for min $\{k \mid A^k = 0\}$: index of Q(P). P. Oblak determined this index [Ob1].

Thm [BI1, Pan]. $Q(P) = P \Leftrightarrow$ parts differ pairwise by ≥ 2 .

(BI: P "stable" if Q(P) = P. Panyushev: P "self large") **Thm.**(T. Kosir and P. Oblak)[KO]: Q(Q(P)) = Q(P). Proof: Show K[A, B] is Gorenstein if $A \in \mathcal{N}_B$ is generic.

Ex 1.5. P = (3, 1). Choose A generic in $\mathcal{U}(B) = \pi^{-1}(0, 0)$.

$$B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & a & b & f \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & d & 0 \end{pmatrix}$$

Then $A^2 = \alpha E_{13}, \alpha = a^2 + df$. If $\alpha \neq 0, P(A) = (3, 1)$ When $\alpha = 0, P(A) = (2, 2)$ or (2, 1, 1) or (1, 1, 1, 1).

 $\mathbf{Ex \ 1.6.} \ P = (3, 1, 1). \ \mathcal{U}_B = \pi^{-1} \left(0, \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} \right)$ $B = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline$

Here $A^3 = cdf E_{13}$ so Q(P) = (4, 1). Also, $A^3 = 0$ iff $P(A) \le (3, 1, 1)$,

Note: the C_B orbit of (3,1,1) in U_B is *reducible*, though its C_B orbit in \mathcal{N}_B is *irreducible*.

We have

where $\alpha = a^2 + dg + ef$.

When $cdf \neq 0$ we have P(A) = (4, 1) = Q(P)

When cdf = 0 but cd or ef or $\alpha \neq 0$ we have rank $A^2 = 1$, and P(A) = (3, 2) if rank A = 3 or (3, 1, 1) if rank A = 2. When $A^2 = 0$, P(A) = (2, 2, 1), (2, 1, 1, 1) or (1, 1, 1, 1, 1). $\mathcal{Q}(P) = \overline{(4, 1)} = \{(4, 1), (3, 2), (3, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)\}.$

2 An involution ι on C_B that restricts to U_B

2.1 An involution on partitioned matrices

Ex 2.1. The involution σ_{ε}	(2,3) takes	s $M_5(R)$	$\rightarrow M_5(I)$?):	
--	-------------	------------	----------------------	-------------	--

ĺ	a	b	α'_4	α'_5	α_6'		$\int d$	b	$lpha_4$	α_5	α_6
	С	d	α'_1	α'_2	α'_3		С	a	α_1	α_2	α_3
	$lpha_3$	$lpha_6$	e	f	g	to	$lpha_3'$	α_6'	m	j	g
	α_2	α_5	h	i	j		α'_2	α'_5	l	i	f
	α_1	$lpha_4$	k	l	m		$\langle \alpha'_1$	α'_4	k	h	e

Definition 2.2. The action of $\sigma_s(a, b)$ on $M_{a+b}(R)$:

- i. reflects the entries in the $a \times a$ block at the upper left, and in the $b \times b$ block in the lower right, about their non-main diagonals.
- ii. Sends the $b \times a$ block in the lower left into the $a \times b$ block at upper right by transpose followed by reversing the order of rows, then reversing the order of columns.

2.2 The involution ι for C_B , $P = (p^a, q^b)$

. We let
$$P = (p^a, q^b) = (p, \dots, p; q, \dots, q), p > q$$
. Let
 $t = (a+b), n = ap + bq$. Let $M = \begin{pmatrix} M(1,1) & M(1,2) \\ M(2,1) & M(2,2) \end{pmatrix}$.

Replace the entries of $M \in M_{a+b}(K)$ by small blocks, forming $M' \in M_n(K)$.. These blocks are M(1, 1), $p \times p$ in the upper left M; M(2, 1), $p \times q$ in the upper right; M(2, 1), $q \times p$ in the lower left; and M(2, 2), $q \times q$ in the lower right. The small blocks have the circulant form found in $A \in \mathcal{U}_B$:

- i. The matrices that comprise the entries of M(2, 1) have the first p - q columns zero, followed by a circulant $q \times q$ subblock $C(2, 1)_{uv}, 1 \le u \le b, 1 \le v \le a$.
- ii. The matrices that comprise the entries of M(1,2) have the last p - q rows zero, preceded by a $q \times q$ matrix $B(1,2)_{uv}, 1 \le u \le a, 1 \le v \le b.$
- **Note**: We use that circulant $q \times q$ matrices commute.

Def. For $P = (p^a, q^b)$, We define $\sigma_{s,P}$ on $\mathcal{C}_B, B = J_P$.

- a. apply the involution $\sigma_s(a, b)$ to M, permuting the small blocks. However, in applying $\sigma_s(a, b)$ we must
- b. replace each $q \times p$ entry $M(2,1)_{uv} = (0, C_{uv}), 1 \leq u \leq a, 1 \leq v \leq b$ of M_{21} by the $p \times q$ matrix $\begin{pmatrix} C_{uv} \\ 0 \end{pmatrix}$, and c. replace each $p \times q$ entry $M(1,2)_{uv} = \begin{pmatrix} B_{uv} \\ 0 \end{pmatrix} 1 \leq u \leq b, 1 \leq v \leq a$ of M_{21} by the $q \times p$ matrix $(0, B_{uv})$.

This definition extends to $\iota = \sigma_{s,P} : \mathcal{C}_B \to \mathcal{C}_B$ for all P. Let $K[X_P]$ the ring of variables, entries of $A_{gen} \in \mathcal{C}_B$; define

 $\sigma: K[X_P] \to K[X_P]$ by the action of $\sigma_{s,P}$ on A_{gen} .

Lem 2.3. We have for $U, V \in C_B$, $\iota = general transpose$:

$$\iota(UV) = \iota(V) \cdot \iota(U); \quad U \in \mathcal{U}_B \Rightarrow \iota(U) \in \mathcal{U}_B.$$
(2.1)

We have for $U, V \in subring K[A_{gen}] \subset C_B$:

$$\iota(U) = \sigma(U), \text{ and } \iota(UV) = \iota(U) \ \iota(V). \tag{2.2}$$

and similarly for K[A], A generic in \mathcal{U}_B .

Ex 2.4. Let $P = (3^2, 1)$	3). Then a g	generic $A \in$	C_B satisfies
-----------------------------------	--------------------	-----------------	-----------------

	1			1		i	1		\	
	α_{11}	a_1	a_2	d	d_2	d_3	f_4	f_5	f_6	
	0	α_{11}	a_1	0	d	d_2	0	0	0	
	0	0	α_{11}	0	0	d	0	0	0	
	α_{21}	С	c_2	α_{22}	a_3	a_4	f	f_2	f_3	
A =	0	α_{21}	С	0	α_{22}	a_3	0	0	0	,
	0	0	α_{21}	0	0	α_{22}	0	0	0	
	0	0	e_3	0	0	e_6	β_{11}	s	s_2	
	0	0	e_2	0	0	e_5	β_{21}	β_{22}	t	
	0	0	e	0	0	e_4	β_{31}	β_{32}	β_{33})
$\pi(z)$	A) =		α_{11}	d	, (β_{11} β_{21}	s eta_{22}	s_2 t		
			$lpha_{21}$ (α_{22} /		β_{31}	β_{32}	β_{33}		

Then $\sigma_{s,P}$ reflects $\pi(A)$ about the non-main diagonals. and

$$\sigma_{s,P}: a_1 \to a_3, a_2 \to a_4; e \to f, e_i \to f_i, 2 \le i \le 6.$$

2.3 The vanishing-order matrix Pow(P); the matrix Powxe(P)

Def. $X_P = \{x_{ij} \mid \text{both } A_{ij} \neq 0, A_{ij}^2 = 0, A \text{ generic in } \mathcal{U}_B\}/\text{mod}$ Hankel relations $\}$. (i.e. We identify equal circulant entries)

$$M_{X_1}(P) = n \times n \text{ matrix with}$$

$$M_{X_1}(P)_{ij} = \begin{cases} x_{ij} \in X_P \text{ if } A \text{ generic in } \mathcal{U}_B \text{ has entry } A_{ij} \in X_P \\ 0 \text{ otherwise.} \end{cases}$$
(2.3)

Powxe $(P) = M_{X_1} + (M_{X_1})^2 + \cdots$.

 $\operatorname{Powx}(P)_{ij} = \operatorname{highest} \operatorname{degree} \operatorname{term} \operatorname{of} \operatorname{Powxe}(P)_{ij},$

 $\operatorname{Pow}(P)$ integer matrix, $\operatorname{Pow}(P)_{ij} = \operatorname{degree} \operatorname{of} \operatorname{Powx}(P)_{ij}$.

Ex 2.5.
$$P = (3)$$
,
 $M_{X_1} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$, Powxe $(P) = \begin{pmatrix} 0 & a & a^2 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$

For P=(3,1,1), the generic $A\in U(B)$ and $\operatorname{Powxe}(P)$ are

$$A = \begin{pmatrix} 0 & \underline{a} & b & \underline{f} & g \\ 0 & 0 & \underline{a} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & e & 0 & \underline{c} \\ 0 & 0 & \underline{d} & 0 & 0 \end{pmatrix}.$$
 (2.4)
$$Powxe(P) = \begin{pmatrix} 0 & a & cdf + a^2 & f & cf \\ 0 & 0 & a & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & cd & 0 & c \\ \hline 0 & 0 & cd & 0 & c \\ \hline 0 & 0 & d & 0 & 0 \end{pmatrix}.$$
 (2.5)

Here $\sigma: d \to f, e \to g$ and $\iota(\operatorname{Powxe}(P) = \sigma(\operatorname{Powxe}(P)).$

Also
$$\sigma(cdf + a^2) = cdf + a^2$$
 - entry fixed by ι ;
and ι takes $\begin{pmatrix} cd \\ d \end{pmatrix}$ to $\begin{pmatrix} f cf \end{pmatrix} = \sigma \begin{pmatrix} d cd \end{pmatrix}$,

2.4 Constructing Powxe(P), an example.

Ex 2.6. For $P = (3^2, 1^3)$.							$A \in \mathcal{U}_B$ and $Pow = Pow(P)$ are													
	0	a_1	a_2	d	d_2	d_3	f_4	f_5	f_6		(()	2	5	1	3	6	2	3	4
	0	0	a_1	0	d	d_2	0	0	0		()	0	2	0	1	3	0	0	0
	0	0	0	0	0	d	0	0	0		()	0	0	0	0	1	0	0	0
	0	С	c_2	0	a_3	a_4	f	f_2	f_3		()	1	4	0	2	5	1	2	3
A =	0	0	С	0	0	a_3	0	0	0	, Pow $=$	()	0	1	0	0	2	0	0	0
	0	0	0	0	0	0	0	0	0		()	0	0	0	0	0	0	0	0
	0	0	e_3	0	0	e_6	0	S	s_2		()	0	3	0	0	4	0	1	2
	0	0	e_2	0	0	e_5	0	0	t		()	0	2	0	0	3	0	0	1
	0	0	e	0	0	e_4	0	0	0)	0	1	0	0	2	0	0	0 /

Here the variables X_1 of M_{X_1} are $\{c, d, e, f, s, t\}$ and corre-

spond to the entries 1 of Pow(P).

	W	e ha	ave for $P = (3^2)$	$^{2}, 1^{2}$	$^{3}) =$	(3, 3, 1, 1, 1), Po)WX(e(P)	is
(0	cd	$defst + c^2d^2$	d	cd^2	$\underline{d^2 efst} + c^2 d^3$	df	dfs	dfst
	0	0	cd	0	d	cd^2	0	0	0
	0	0	0	0	0	d	0	0	0
	0	С	$efst + c^2d$	0	cd	$defst + c^2d^2$	f	fs	fst
	0	0	С	0	0	cd	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	est	0	0	dest	0	S	st
	0	0	et	0	0	det	0	0	t
	0	0	e	0	0	de	0	0	0

Here Q(P) has two parts (by an R. Basili result, as $P = p^a, q^b, p > q + 1$ has $r_P = 2$); the highest nonzero power of a generic $A \in \mathcal{U}_B$ is $A^6 = \underline{d^2 efst} E_{16}$, hence Q(P) = (7, 2).

Here Powxe(P) shows the symmetry

$$\iota(\operatorname{Powxe}(P)) = \sigma(\operatorname{Powxe}(P),$$

and is evidently simply constructed from $M_{X_1} \in \mathcal{U}_B$. [BI2].

2.5 Pow(P) and a basis for $\mathcal{U}_B{}^i$.

¹ Let $P = (p_1^{r_1}, \ldots, p_t^{r_t}), p_1 > \cdots > p_t$, and let A be a generic element of \mathcal{U}_B . If the entry $A_{ij} \neq 0$ and $A_{ij} \neq A_{i-1,j-1}$ we denote it by x_{ij} , and the set of all such by X_P (one variable for each small Hankel diagonal). Let $s_i = r_1 + \cdots + r_{i+1}$. Considering $\pi : \mathcal{C}_B \to M_B$, $\dim_K(U_B) = \# X_P$ satisfies

$$\# X_P = \sum_{i} \left(ir_i \left(r_i + 2s_i \right) - r_i \left(\frac{r_i + 1}{2} \right) \right).$$
(2.6)

Let $S_P = \{i \mid r_i > 0\}$, and $\forall i \in S_P$, $j_i = r_i + \max\{r_{i-1}, r_{i+1}\}$ (jump index), $s = \sum r_i$, and recall $t = \# S_P$. We denote by

$$X_k = \{ x_{ij} \in X_P \mid A_{ij}^k \neq 0 \text{ but } A_{ij}^{k+1} = 0 \}$$
(2.7)

Thus, X_k comprise the distinct variables from X_P corresponding to entries k of Pow(P). We have [BI2, Sec. 3.1]

$$\# X_1 = s + 2(t-1) - \# \{i \mid j_i > r_i\}$$
(2.8)

¹This section, an algebraic interpretation of some of the results in [BI2], was inspired by our discussions at the 'CA meets AC' conference January 08 with J. Weyman and T. Koŝir.

We let $\mathcal{B}_P = I + \mathcal{U}_B$, and filter it by the ideals

$$\mathcal{B}_P \supset U_B \supset U_B^2 \supset \cdots \supset U_B^{e_P} \supset 0.$$

Here $e_P = i(Q(P)) - 1$, i(Q(P)) = index of Q(P), the largest part. We set $U_B^0 = \mathcal{B}_P$. Denote by $E = \langle \{e_{ij}, 1 \leq i, j \leq n\} \rangle$, the n^2 -dim vector space. For $x_{ij} \in X_P$, let $v_{ij} \in E$ satisfy $v_{ij} = \sum' e_{uv}$ where \sum' is over $\{uv \mid A_{uv} = x_{ij}\}$. Let $V_k =$ $\{v_{ij}, \mid x_{ij} \in X_k\}$, and $\langle V_k \rangle \subset E$ their span, $V = \sum_{k=1}^{e_P} V_k$.

Thm. We have the internal direct sums

A.
$$\mathcal{B}_P = \bigoplus_{k=0}^{e_P} \langle V_i \rangle \cong \bigoplus_{k=0}^{e_P} U_B{}^k / U_B{}^{k+1};$$

B. for
$$i \ge 0$$
, $(U_B)^i = \bigoplus_{k \ge i} \langle V_k \rangle$

C. Also, for $1 \le i \le e_P$, $0 : (U_B)^i = (U_B)^{e_P - i}$.

Proof Outline. We write e_{ij} also for the corresponding element of U_B , provided $x_{ij} \in X_P$. (So $U_B \subset V$). Let $u \in U_B{}^k \subset E$ have nonzero component on some e_{ij} (with $x_{ij} \in X_k$). Then we achieve v_{ij} as a product of k elements $v_1 \times \cdots \times v_k, v_i \in V_1$. **Ex 2.7.** P = (3, 11).

$$A = \begin{pmatrix} 0 & \underline{x_{12}} & x_{13} & \underline{x_{14}} & x_{15} \\ 0 & 0 & \underline{x_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & x_{43} & 0 & \underline{x_{45}} \\ 0 & 0 & \underline{x_{53}} & 0 & 0 \end{pmatrix}$$

Here $v_{12} = e_{12} + e_{23}, v_{33} = e_{33}, \dots, v_{53} = e_{53}$.

$$U_B/U_B{}^2 = V_1 = \langle v_{12}, v_{14}, v_{45}, v_{53} \rangle.$$

 $U_B{}^2/U_B{}^3 = V_2 = \langle v_{15}, v_{43} \rangle \text{ and } U_B{}^3 = V_3 = \langle v_{13} \rangle.$

The action of ι extends to V, and each V_i is ι -invariant.

Remark. There is symmetry here and for some other (not all) P in the " U_B -Hilbert functions", when stratified by large matrix blocks", corresponding to 3, (3, 1), 1. Here $H_{U_B}(V_1) =$ $(1, 2, 1), H_{U_B}(V_2) = (0, 2, 0).$

Problem. Let A_i = generic element of U_B^i . We have, evidently, rank $A_i \ge \text{rank } A^i$. Compare these ranks.

- 3 What is $Q_S(P)$ maximal nilpotent orbit in $\pi^{-1}(M_S(B))$?
- **3.1** Nilpotent multi-orbits $M_S(B) \subset M(B)$.

Definition 3.1. Let $P = (p_1^{r_1}, \ldots, p_k^{r_k}), p_1 > \ldots > p_k$. Let $\langle r_i \rangle = \text{POS of partitions of } r_i$. Let $S = (S_1, \ldots, S_k), S_i \in$ $r_i, 1 \leq i \leq k$. Let $\mathfrak{S}(P) = \{S \in \langle r_1 \rangle \times \cdots \times \langle r_k \rangle\}.$ $M_S(B) = \text{nilpotent multi-orbit in } M_{r_1}(K) \times \cdots \times M_{r_k}(K)$

determined by S.

Since $M_S(B)$ is irreducible and $\pi^{-1}(M_S(B))$ is fibred over $M_S(B)$ by an affine space isomorphic to the Jacobson radical \mathfrak{J} of \mathcal{C}_B , we have $\pi^{-1}(M_S(B))$ is irreducible.

We denote by $Q_S(B)$ the partition giving the Jordan blocks of a generic element of $\pi^{-1}(M_S(B))$.

Ex 3.2. When $S = ((r_1), \ldots, (r_k))$ (each S_i a single Jordan block), then $M_S(B) = M(B), Q_S(B) = Q(B)$.

Let $0 = S_0 = ((1^{r_1}), \dots, (1^{r_k}))$ then $M_S(B) = \{(0, \dots, 0)\},\$

and $Q_0(B)$ is the maximal partition for an element of \mathfrak{J} .

Observation. When the distinct parts of P differ by two or more, then $Q_0(P) = P$; otherwise, $Q_0(P) \neq P$. For $P = (2, 1^3), S = ((1), (1^3))$, then $Q_0(B) = (3, 1, 1) \neq P$.

Problem: Find $Q_S(B)$ for each S. Interpolates between Q(P), and the generic orbit for $\mathcal{A} \in \mathfrak{J}$, the Jacobson radical.

- Lem 3.3 (Lifting). *i.* Let $\sigma \in Gl_{r_1}(K) \times \cdots \times Gl_{r_k}(K)$ and $M, M' \in M(B)$, and let $A \in C_B$ with $\pi(A) = M$. Then there is a unit $\sigma' \in C_B$ such that $\pi(\sigma'(A)) = A'$.
 - ii. $Q_S(P) = P(A)$ for A generic in $\pi^{-1}(J_{S_1}, \ldots, J_{S_k})$.

That is, in finding $Q_S(P)$ we may assume that $\pi(A)$ has components each in Jordan block form.

3.2 The partition $Q_S(P)$

Def: For a fixed P denote by $\mathfrak{Q}(P)$ the POS

$$\mathfrak{Q}(P) = \{ Q_S(P) \mid \forall S \in (\mathfrak{P}(r_1) \times \cdots \times \mathfrak{P}(r_k)) \},\$$

Lem 3.4. : $S \to Q_S(P)$ is a map of POS: $\mathfrak{S}(P) \to \mathfrak{Q}(P)$.

For a partition $(S_1 = (s_{11}, \ldots, s_{1t}), \text{ we let } m(S_1) = (ms_{11}, \ldots, ms_{1t}).$

Ex 3.5 (Observation). Let $P = (m^a) = (m, \ldots, m)$, and

let S_1 be a partition of (a). Then $Q_{S_1}(P) = m(S_1)$.

Ex 3.6 (Observation). $[Q_S(P) \text{ for hooks}]$ Let $P = (p, 1^b) |$ p > 1. Then the map $S \to Q_S(P) : \mathfrak{S} \to \mathfrak{Q}(P)$, is an isomorphism of lattices.

 $Q_0(P) = P$ if $p \ge 3$; $Q_0(P) = (3, 1^{b-1})$ if p = 2. Let $S = ((1), R), T \in \mathcal{P}(B)$. Then $Q_S(P)$ is obtained by "adding" T to $Q_0(P)$: add $T_i - 1$ to $Q_0(P)_i, i = 1, 2, ...$ until the sum n is attained.

Ex
$$P = (2, 1^4)$$
 (see Ex 3.7B). $Q_0(P) = (3, 1, 1)$. $S = (2, 2)$
 $Q_S(P) = (2, 2) + (3, 1, 1, 1) = (3 + 2 - 1, 1 + 2 - 1) = (4, 2)$

Ex 3.7. Hooks, p = 2.

A.
$$P = (2, 1^3);$$
 $\mathfrak{S} = \langle 1 \rangle \times \langle 3 \rangle$.
 $Q_S(P)$
 S
 (5)
 (3)
 $(4, 1)$
 $(2, 1)$
 $(3, 1, 1)$
 $(1, 1, 1)$
B. $P = (2, 1^4);$ $\mathfrak{S} = \langle 1 \rangle \times \langle 4 \rangle$.
 $Q_S(P)$
 S
 (6)
 (4)
 $(5, 1)$
 $(4, 2)$
 $(3, 1)$
 $(2, 2)$
 $(4, 1, 1)$
 $(2, 1, 1)$
 $(3, 1^3)$
 (1^4)

Ex 3.8. Hook: p = 3. $P = (3, 1^4)$; $\mathfrak{S} = \langle 1 \rangle \times \langle 4 \rangle$. $Q_S(P)$ S $(6,1) \qquad \longleftarrow$ (4)(5,1,1) (4,2,1) \leftarrow (3,1) (2,2) $(4,1,1,1) \qquad \longleftarrow \qquad (2,1,1)$ $(3, 1^4) \qquad \longleftarrow$ (1^4) **Ex 3.9.** $P = (2^2, 1^3); \quad \mathfrak{S} = \langle 2 \rangle \times \langle 3 \rangle$. $Q_S(P)$ S(7) $\longleftarrow \qquad (2) \times (3)$ $(5,2) \qquad \longleftarrow \qquad (1,1) \times (3) \qquad (2) \times (2,1)$ $(4,3) \qquad \longleftarrow \quad (1,1) \times (2,1)$ $(4,2,1) \quad \leftarrow$ $(2) \times (1, 1, 1)$ $(3,3,1) \quad \leftarrow \quad$ $(1,1) \times (1,1,1)$

 $\mathfrak{S}(P) \to \mathfrak{Q}(P)$ is *not* an isomorphism of POS. ((1,1)×(2,1) and (2)×(1,1,1) are incomparable in $\mathfrak{S}(P)$.)

3.3 Questions: the involution ι and $Q_S(P)$.

- a. To what extent is $Q_S(P)$ an invariant of the digraph $\mathcal{D}(A)$, or digraph wih involution ι , for A generic in $U_S(B)$?
- b. What other invariants of P are steps toward $Q_S(P)$?
- c. Fix P. The condition of A being in $\pi^{-1}(J_{r_1}, \ldots, J_{r_k})$ leads to a different digraph-with-involution \mathcal{D}' than \mathcal{D} for A generic in \mathcal{U}_B . But the lengths of longest paths from $i \to j$ are unchanged, as the matrix M_{X_1} is in this fibre.

Is the S. Poljak calculation of partitions for the generic matrices of digraphs $\mathcal{D}, \mathcal{D}'$ the same? And what is their relation to Q(P)?

- d. Can the ranks of A^k , A generic in \mathcal{U}_B be concluded from those of certain powers (or powers and sums) of M_{X_1} ?
- e. Fix $S = (S_1, \ldots, S_k)$. By regarding the intersection of $X_1(P)$ with $\pi^{-1}(J_{S_1}, \ldots, J_{S_k})$, one can construct variables

 $X_1(S)$ and matrices $M_{X_1(S)}$. Can the ranks of powers of generic elements of the same fibres, be figured from the ranks of powers and sums of $M_{X_1(S)}$?

References

- [Bar2001] V. Baranovsky: The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), no. 1, 3–8.
- [Basili 2000] R. Basili: On the irreducibility of varieties of commuting matrices, J. Pure Appl. Algebra 149(2) (2000), 107–120.
- [Basili 2003] _____: On the irreducibility of commuting varieties of nilpotent matrices. J. Algebra 268 (2003), no. 1, 58–80.
- [BI1] _____and A. Iarrobino : *Pairs of commuting nilpotent matrices, and Hilbert functions*, preprint, 2007, ArXiv math.AC: 0709.2304.
- [BI2] _____, ____: An involution on \mathcal{N}_B , the nilpotent commutator of a nilpotent Jordan matrix B, preprint, July 31,2007. (being revised, 2008).
- [I1] A. Iarrobino : Associated Graded Algebra of a Gorenstein Artin Algebra, Memoirs Amer. Math. Society,

Vol 107 #514, (1994), Amer. Math. Soc., Providence.

- [KO] T. Košir and P. Oblak: A note on commuting pairs of nilpotent matrices, preprint, 2007, ArXiv Math.AC/0712.2813.
- [KnZe] H. Knight and A. Zelevinsky: Representations of Quivers of Type A and the Multisegment Duality, Advances in Math. 117 #2 (1996), 273–293.
- [NS] M. Neubauer and D. Saltman: Two-generated commutative subalgebras of M_nF , J. Algebra **164** (1994), 545–562.
- [NSe] _____ and B.A. Sethuraman: Commuting pairs in the centralizers of 2-regular matrices, J. Algebra 214 (1999), 174–181.
- [Ob1] P. Oblak: The upper bound for the index of nilpotency for a matrix commuting with a given nilpotent matrix, Linear and Multilinear Algebra (electronically published 9/2007). Slightly revised in ArXiv: math.AC/0701561.

- [Pan] D. I. Panyushev: Two results on the centralizers of nilpotent elements, preprint, 2007, to appear, JPAA.
- [Pol] S. Poljak: Maximum Rank of Powers of a Matrix of Given Pattern, Proc. A.M.S., 106 #4 (1989), 1137– 1144.
- [Pre] A. Premet: Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653-683.
- [Tur, Ait] H.W. Turnbull, A.C. Aitken: An introduction to the theory of canonical matrices Dover, New York, 1961.
- [HW1] T. Harima and J. Watanabe: The commutator algebra of a nilpotent matrix and an application to the theory of commutative Artinian algebras, preprint, (2005, revised 2007), to appear, J. Algebra.
- [HW2] _____and ____: The central simple modules of Artinian Gorenstein algebras, J. Pure and Applied Algebra 210(2) (2007), 447–463.