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Abstract

We consider the irreducible variety NB of nilpotent ele-

ments of the commutator CB of a nilpotent n × n Jordan

matix B having Jordan blocks given by the partition P of n,

over a field K. Fix a homomorphism: π : CB → MB, where

MB is a product of matrix algebras over K, with kernel the

Jacobson radical JB of CB. The inverse image of the subva-

riety Ur corresponding to strictly upper triangular matrices,

is a maximal nilpotent subalgebra UB of CB. R. Basili gave a

specific homomorphism π, and parametrization of UB, that

has been used by several. We describe an involution on UB,

that is a generalized transpose. This involution underlies

some of the symmetries we reported last year, in matrices

related to the vanishing of elements of Ak, A generic in UB.

We pose several questions related to the open one of de-

termining the Jordan partition of the generic element of NB.
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Introduction. Several groups are studying similar problems.

• V. Baranovsky, R. Basili, and A. Premet.

Let R = K{x, y}, pow.series; K alg. closed. V = Kn;

NPn(K) = pairs (A, B) of nilpotent n× n matrices, [A, B] = 0.

NP ′
n(K) = pairs having a cyclic vector v ∈ V .

Fibration: τ : NP ′
n(K)× V → HilbnR:

τ : (A, B, v) → K[A, B], Artinian algebra.

Briançon’s Thm. (1977). Reproved/extended by M. Granger (1983)

HilbnK[x, y] is irred, over field K, char K = 0. (I.-also char K > n).

Thm. (Baranovsky, 2001)

Hilbn(R) irreducible ⇔ NPn(K) irreducible.

∴ NPn(K) irred. char K = 0 or char K = p > n.

Thm. [Basili 2003], char K = 0 or p > n/2; [Pre] all alg. cld K:

NPn(K) is irred (proven directly). ∴ Hilbn(R) irred. ∀K.

• R. Basili-I.: Goal: Understand τ−1ZH , H a fixed Hilbert function.

Let NB ={ nilpotent A | [A, B] = 0}. Subgoal: Understand Q(P ) =

largest Jordan block partition of A ∈ NB.

Thm. Q(P ) = P iff parts of P differ pairwise by ≥ 2.

Thm. A ∈ NB and ∃ cyclic v ⇒ general A + tB has partition P (H),

(P (H) = partition giving lengths of the rows of bar graph of H.)
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• T. Košir, P. Oblak: Goal: Understand Q(P ). Motivation: PDE.

Thm. (P. Oblak, 2006): Finds index of Q(P ). (Later also by BI).

Thm. (T. Košir and P. Oblak): Q(Q(P )) = Q(P ) ( Q(P ) “stable”).

• G. McNinch: Pencils of nilpotent matrices (char p Lie groups).

Thm. A ∈ NB ⇒ A, B ∈ Jacobson radical of A + tB for t generic

(char K = 0 or most p, no need for cyclic v.)

• D.I. Panyushev: Goal: Understand Premet, (from Lie theory).

Thm. Determines “self large” orbits for any Lie group G, char K = 0.

(In special case G = gl(n), “self large”= stable). Pencils, char K = 0.

• T. Harima and J. Watanabe. Strong Lefschetz properties (SLP) of

x ∈ A, Artin algebra. Def x has SLP if mxi has max rank for H, i > 0.

Thm. A any graded Artinian x ∈ A1 generic⇒ x has a strong lefschetz

property, under suitable (strong) conditions.

• • •

Goal of present work:

A. Describe an involution ι on the fibres of π.

B. Contribute to understanding algebra structure of UB, maximal

nilpotent subalgebra of NB: we give bases for (UB)i.

C. Generalize the problem of finding Q(P ).
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1 What is Q(P ), maximal nilpotent orbit in CB?

Let K = algebraically closed field, Mn(K) = n× n matrices.

N (n, K) = {nilpotent A ∈Mn(K)}.

Fix B ∈ N (n, K) in Jordan form, of partition P = (λ1, . . . ,λt).

CB = A ∈M(n, k) | [A, B] = 0. NB = CB ∩N (n, K).

Problem 1.1. FindQ(P ) = {Jordan partitions of A ∈ NB}.

Thm 1.2. NB is irreducible. Q(P ) has a maximum, Q(P ).

Ex 1.3. P = (4), so B is regular (single Jordan block).

B =





0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0





, A =





0 a b c

0 0 a b

0 0 0 a

0 0 0 0





When a -= 0, A3 -= 0 and P (A) = (4).

When a = 0, b -= 0, A3 = 0, P (A) = (2, 2)

When a = b = 0, c -= 0, then P (A) = (2, 1, 1).

When a = b = c = 0 then P (A) = (1, 1, 1, 1).

(3, 1) cannot occur for P (A), A ∈ NB, P (B) = (4).
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1.1 The morphism π : CB → MB. (semisimple part)

R. Basili [Basili 2000] using [Tur, Ait] parametrized NB:

Ex 1.4. Let P = (3, 3, 2), B = JP . Then A ∈ CB satisfies:

A =





a1
11 a2

11 a3
11 a1

12 a2
12 a3

12 a1
13 a2

13

0 a1
11 a2

11 0 a1
12 a2

12 0 a1
13

0 0 a1
11 0 0 a1

12 0 0

a1
21 a2

21 a3
21 a1

22 a2
22 a3

22 a1
23 a2

23

0 a1
21 a2

21 0 a1
22 a2

22 0 a1
23

0 0 a1
21 0 0 a1

22 0 0

0 a2
31 a3

31 0 a2
32 a3

32 α1
33 a2

33

0 0 a2
31 0 0 a2

32 0 α1
33





with entries in the ring Z[a1
11, . . . , a

2
33] in 21 variables. Let

J = Jacobson rad. of CB, MB = C(B)/J semisimple quotient.

Set A(3) =




a1

11 a1
12

a1
21 a1

22



 , A(2) = (α1
33),

Morphism: π : CB → MB : A → (A(3),A(2)).

Here UB = π−1 (strictly upper triangular 2× 2 matrices , 0).
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1.2 Maximal nilpotent subalgebra UB of CB.

Let the partition P = (pr1
1 , . . . , prs

s ), p1 > · · · > ps.

MB = Mr1(K)× · · ·×Mrs(K),

Nr(B) = Nr1(K)×· · ·×Nrs(K). We have NB = π−1(Nr(B)).

Ur(B) = Ur1(K)× · · ·× Urs(K). Let UB = π−1(Ur(B)).

Lemma. UB = a maximal nilpotent subalgebra of CB.

Def. Digraph D(A) of a matrix A ∈Mn(K): Directed graph:

Vertices = {1, 2, . . . n}; An arrow from i to j iff Aij -= 0.

Lemma. For A generic in UB, D(A) has no loops. Also

∀k ∈ N,∀i, j | 1 ≤ i, j ≤ n, (Ak)ij = 0 ⇒ (Ak+1)ij = 0.

Question. Is the rank of Ak, k = 1, 2, . . . an invariant of

D(P )? Is this rank the same as that for a generic matrix of

zeros and variables with the same digraph [Pol, KnZe]?

Thm.(P. Oblak): Yes, for min{k | Ak = 0}: index of Q(P ).

P. Oblak determined this index [Ob1].

Thm [BI1, Pan]. Q(P ) = P ⇔ parts differ pairwise by ≥ 2.
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(BI: P “stable” if Q(P ) = P . Panyushev: P “self large”)

Thm.(T. Kosir and P. Oblak)[KO]: Q(Q(P )) = Q(P ).

Proof: Show K[A, B] is Gorenstein if A ∈ NB is generic.

Ex 1.5. P = (3, 1). Choose A generic in U(B) = π−1(0, 0) .

B =





0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0





, A =





0 a b f

0 0 a 0

0 0 0 0

0 0 d 0





.

Then A2 = αE13,α = a2 + df . If α -= 0, P (A) = (3, 1)

When α = 0, P (A) = (2, 2) or (2, 1, 1) or (1, 1, 1, 1).

Ex 1.6. P = (3, 1, 1). UB = π−1 (0, ( 0 c
0 0 ))

B =





0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





, A =





0 a b f g

0 0 a 0 0

0 0 0 0 0

0 0 e 0 c

0 0 d 0 0





.
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Here A3 = cdfE13 so Q(P ) = (4, 1).

Also, A3 = 0 iff P (A) ≤ (3, 1, 1),

Note: the CB orbit of (3,1,1) in UB is reducible, though its CB

orbit in NB is irreducible.

We have

A2 =





0 0 α 0 cf

0 0 0 0 0

0 0 0 0 0

0 0 cd 0 0

0 0 0 0 0





, A3 =





0 0 cdf 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





, A4 = 0.

where α = a2 + dg + ef .

When cdf -= 0 we have P (A) = (4, 1) = Q(P )

When cdf = 0 but cd or ef or α -= 0 we have rank A2 = 1,

and P (A) = (3, 2) if rankA = 3 or (3, 1, 1) if rank A = 2.

When A2 = 0, P (A) = (2, 2, 1), (2, 1, 1, 1) or (1, 1, 1, 1, 1).

Q(P ) = (4, 1) = {(4, 1), (3, 2), (3, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}.
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2 An involution ι on CB that restricts to UB

2.1 An involution on partitioned matrices

Ex 2.1. The involution σs(2, 3) takes M5(R) → M5(R):




a b α′4 α′5 α′6

c d α′1 α′2 α′3

α3 α6 e f g

α2 α5 h i j

α1 α4 k l m





to





d b α4 α5 α6

c a α1 α2 α3

α′3 α′6 m j g

α′2 α′5 l i f

α′1 α′4 k h e





.

Definition 2.2. The action of σs(a, b) on Ma+b(R) :

i. reflects the entries in the a×a block at the upper left, and

in the b× b block in the lower right, about their non-main

diagonals.

ii. Sends the b× a block in the lower left into the a× b block

at upper right by transpose followed by reversing the order

of rows, then reversing the order of columns.
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2.2 The involution ι for CB, P = (pa, qb)

. We let P = (pa, qb) = (p, . . . , p; q, . . . , q), p > q.. Let

t = (a + b), n = ap + bq. Let M =




M(1, 1) M(1, 2)

M(2, 1) M(2, 2)



 .

Replace the entries of M ∈Ma+b(K) by small blocks, form-

ing M ′ ∈Mn(K).. These blocks are M(1, 1), p× p in the up-

per left M ; M(2, 1), p× q in the upper right; M(2, 1), q × p

in the lower left; and M(2, 2), q × q in the lower right. The

small blocks have the circulant form found in A ∈ UB:

i. The matrices that comprise the entries of M(2, 1) have

the first p− q columns zero, followed by a circulant q × q

subblock C(2, 1)uv, 1 ≤ u ≤ b, 1 ≤ v ≤ a.

ii. The matrices that comprise the entries of M(1, 2) have

the last p − q rows zero, preceded by a q × q matrix

B(1, 2)uv, 1 ≤ u ≤ a, 1 ≤ v ≤ b.

Note: We use that circulant q × q matrices commute.
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Def. For P = (pa, qb), We define σs,P on CB, B = JP .

a. apply the involution σs(a, b) to M , permuting the small

blocks. However, in applying σs(a, b) we must

b. replace each q × p entry M(2, 1)uv = (0, Cuv), 1 ≤ u ≤

a, 1 ≤ v ≤ b of M21 by the p× q matrix




Cuv

0



, and

c. replace each p × q entry M(1, 2)uv =




Buv

0



 1 ≤ u ≤

b, 1 ≤ v ≤ a of M21 by the q × p matrix (0, Buv).

This definition extends to ι = σs,P : CB → CB for all P . Let

K[XP ] the ring of variables, entries of Agen ∈ CB; define

σ : K[XP ] → K[XP ] by the action of σs,P on Agen.

Lem 2.3. We have for U, V ∈ CB, ι = general transpose:

ι(UV ) = ι(V ) · ι(U); U ∈ UB ⇒ ι(U) ∈ UB. (2.1)

We have for U, V ∈ subring K[Agen] ⊂ CB:

ι(U) = σ(U), and ι(UV ) = ι(U) ι(V ). (2.2)
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and similarly for K[A], A generic in UB.

Ex 2.4. Let P = (32, 13). Then a generic A ∈ CB satisfies

A =





α11 a1 a2 d d2 d3 f4 f5 f6

0 α11 a1 0 d d2 0 0 0

0 0 α11 0 0 d 0 0 0

α21 c c2 α22 a3 a4 f f2 f3

0 α21 c 0 α22 a3 0 0 0

0 0 α21 0 0 α22 0 0 0

0 0 e3 0 0 e6 β11 s s2

0 0 e2 0 0 e5 β21 β22 t

0 0 e 0 0 e4 β31 β32 β33





,

π(A) =








α11 d

α21 α22



 ,





β11 s s2

β21 β22 t

β31 β32 β33








.

Then σs,P reflects π(A) about the non-main diagonals. and

σs,P : a1 → a3, a2 → a4; e → f, ei → fi, 2 ≤ i ≤ 6.
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2.3 The vanishing-order matrix Pow(P ); the matrix Powxe(P )

Def. XP = {xij | both Aij -= 0, A2
ij = 0, A generic in UB}/mod

Hankel relations }. (i.e. We identify equal circulant entries)

MX1(P ) = n× n matrix with

MX1(P )ij =






xij ∈ XP if A generic in UB has entry Aij ∈ XP

0 otherwise.

(2.3)

Powxe(P ) = MX1 + (MX1)
2 + · · · .

Powx(P )ij = highest degree term of Powxe(P )ij,

Pow(P ) integer matrix, Pow(P )ij = degree of Powx(P )ij.

Ex 2.5. P = (3),

MX1 =





0 a 0

0 0 a

0 0 0




, Powxe(P ) =





0 a a2

0 0 a

0 0 0
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For P = (3, 1, 1), the generic A ∈ U(B) and Powxe(P ) are

A =





0 a b f g

0 0 a 0 0

0 0 0 0 0

0 0 e 0 c

0 0 d 0 0





. (2.4)

Powxe(P ) =





0 a cdf + a2 f cf

0 0 a 0 0

0 0 0 0 0

0 0 cd 0 c

0 0 d 0 0





. (2.5)

Here σ : d → f, e→ g and ι(Powxe(P ) = σ(Powxe(P )).

Also σ(cdf + a2) = cdf + a2 - entry fixed by ι;

and ι takes




cd

d



 to

(
f cf

)
= σ

(
d cd

)
,
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2.4 Constructing Powxe(P ), an example.

Ex 2.6. ForP = (32, 13). A ∈ UB and Pow = Pow(P ) are

A =





0 a1 a2 d d2 d3 f4 f5 f6

0 0 a1 0 d d2 0 0 0

0 0 0 0 0 d 0 0 0

0 c c2 0 a3 a4 f f2 f3

0 0 c 0 0 a3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 e3 0 0 e6 0 s s2

0 0 e2 0 0 e5 0 0 t

0 0 e 0 0 e4 0 0 0





, Pow =





0 2 5 1 3 6 2 3 4

0 0 2 0 1 3 0 0 0

0 0 0 0 0 1 0 0 0

0 1 4 0 2 5 1 2 3

0 0 1 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 3 0 0 4 0 1 2

0 0 2 0 0 3 0 0 1

0 0 1 0 0 2 0 0 0





.

Here the variables X1 of MX1 are {c, d, e, f, s, t} and corre-

spond to the entries 1 of Pow(P ).
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We have for P = (32, 13) = (3, 3, 1, 1, 1), Powxe(P ) is




0 cd defst + c2d2 d cd2 d2efst + c2d3 df dfs dfst

0 0 cd 0 d cd2 0 0 0

0 0 0 0 0 d 0 0 0

0 c efst + c2d 0 cd defst + c2d2 f fs fst

0 0 c 0 0 cd 0 0 0

0 0 0 0 0 0 0 0 0

0 0 est 0 0 dest 0 s st

0 0 et 0 0 det 0 0 t

0 0 e 0 0 de 0 0 0





.

Here Q(P ) has two parts (by an R. Basili result, as P =

pa, qb, p > q + 1 has rP = 2); the highest nonzero power of a

generic A ∈ UB is A6 = d2efstE16, hence Q(P ) = (7, 2).

Here Powxe(P ) shows the symmety

ι(Powxe(P )) = σ(Powxe(P ),

and is evidently simply constructed from MX1 ∈ UB. [BI2].
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2.5 Pow(P ) and a basis for UB
i.

1 Let P = (pr1
1 , . . . , prt

t ), p1 > · · · > pt, and let A be a generic

element of UB. If the entry Aij -= 0 and Aij -= Ai−1,j−1 we

denote it by xij, and the set of all such by XP (one variable

for each small Hankel diagonal). Let si = r1 + · · · + ri+1.

Considering π : CB → MB, dimK(UB) = # XP satisfies

# XP =
∑

i

(
iri (ri + 2si)− ri

(
ri + 1

2

))
. (2.6)

Let SP = {i | ri > 0}, and ∀i ∈ SP , ji = ri +max{ri−1, ri+1}

(jump index), s =
∑

ri, and recall t =# SP . We denote by

Xk = {xij ∈ XP | Ak
ij -= 0 but Ak+1

ij = 0} (2.7)

Thus, Xk comprise the distinct variables from XP correspond-

ing to entries k of Pow(P ). We have [BI2, Sec. 3.1]

# X1 = s + 2(t− 1)− # {i | ji > ri} (2.8)
1This section, an algebraic interpretation of some of the results in [BI2], was inspired by our

discussions at the ‘CA meets AC’ conference January 08 with J. Weyman and T. Koŝir.
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We let BP = I + UB, and filter it by the ideals

BP ⊃ UB ⊃ UB
2 ⊃ · · · ⊃ UB

eP ⊃ 0.

Here eP = i(Q(P ))− 1, i(Q(P )) = index of Q(P ), the largest

part. We set U 0
B = BP . Denote by E = 〈{eij, 1 ≤ i, j ≤ n}〉,

the n2-dim vector space. For xij ∈ XP , let vij ∈ E satisfy

vij =
∑′ euv where

∑′ is over {uv | Auv = xij}. Let Vk =

{vij, | xij ∈ Xk}, and 〈Vk〉 ⊂ E their span, V =
∑eP

k=1 Vk.

Thm. We have the internal direct sums

A. BP = ⊕eP
k=0〈Vi〉 ∼= ⊕eP

k=0 UB
k/UB

k+1;

B. for i ≥ 0, (UB)i = ⊕k≥i〈Vk〉.

C. Also, for 1 ≤ i ≤ eP , 0 : (UB)i = (UB)eP−i.

Proof Outline. We write eij also for the corresponding element

of UB, provided xij ∈ XP . (So UB ⊂ V ). Let u ∈ UB
k ⊂ E

have nonzero component on some eij (with xij ∈ Xk). Then

we achieve vij as a product of k elements v1× · · ·×vk, vi ∈ V1.

"
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Ex 2.7. P = (3, 11).

A =





0 x12 x13 x14 x15

0 0 x12 0 0

0 0 0 0 0

0 0 x43 0 x45

0 0 x53 0 0





.

Here v12 = e12 + e23, v33 = e33, . . . , v53 = e53.

UB/UB
2 = V1 = 〈v12, v14, v45, v53〉.

UB
2/UB

3 = V2 = 〈v15, v43〉 and UB
3 = V3 = 〈v13〉.

The action of ι extends to V , and each Vi is ι-invariant.

Remark. There is symmetry here and for some other (not

all) P in the “UB-Hilbert functions”, when stratified by large

matrix blocks”, corresponding to 3, (3, 1), 1. Here HUB(V1) =

(1, 2, 1), HUB(V2) = (0, 2, 0).

Problem. Let Ai = generic element of UB
i. We have, evi-

dently, rank Ai ≥ rank Ai. Compare these ranks.
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3 What is QS(P ) – maximal nilpotent orbit in

π−1(MS(B))?

3.1 Nilpotent multi-orbits MS(B) ⊂ M(B).

Definition 3.1. Let P = (pr1
1 , . . . , prk

k ), p1 > . . . > pk. Let

〈ri〉 = POS of partitions of ri. Let S = (S1, . . . , Sk), Si ∈

ri, 1 ≤ i ≤ k. Let S(P ) = {S ∈ 〈r1〉 × · · ·× 〈rk〉}.

MS(B) = nilpotent multi-orbit in Mr1(K)× · · ·×Mrk
(K)

determined by S.

Since MS(B) is irreducible and π−1(MS(B)) is fibred over

MS(B) by an affine space isomorphic to the Jacobson radical

J of CB, we have π−1(MS(B)) is irreducible.

We denote by QS(B) the partition giving the Jordan blocks

of a generic element of π−1(MS(B)).

Ex 3.2. When S = ((r1), . . . , (rk)) (each Si a single Jordan

block), then MS(B) = M(B), QS(B) = Q(B).

Let 0 = S0 = ((1r1), . . . , (1rk)) then MS(B) = {(0, . . . , 0)},
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and Q0(B) is the maximal partition for an element of J.

Observation. When the distinct parts of P differ by two or

more, then Q0(P ) = P ; otherwise, Q0(P ) -= P .

For P = (2, 13), S = ((1), (13)), then Q0(B) = (3, 1, 1) -= P .

Problem: Find QS(B) for each S. Interpolates between

Q(P ), and the generic orbit for A ∈ J, the Jacobson radical.

Lem 3.3 (Lifting). i. Let σ ∈ Glr1(K) × · · · × Glrk
(K)

and M, M ′ ∈ M(B), and let A ∈ CB with π(A) = M .

Then there is a unit σ′ ∈ CB such that π(σ′(A)) = A′.

ii. QS(P ) = P (A) for A generic in π−1(JS1, . . . , JSk
).

That is, in finding QS(P ) we may assume that π(A) has

components each in Jordan block form.
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3.2 The partition QS(P )

Def: For a fixed P denote by Q(P ) the POS

Q(P ) = {QS(P ) ∀S ∈ (P(r1)× · · ·×P(rk))},

Lem 3.4. : S → QS(P ) is a map of POS: S(P ) → Q(P ).

For a partition (S1 = (s11, . . . , s1t), we let m(S1) = (ms11, . . . ms1t).

Ex 3.5 (Observation). Let P = (ma) = (m, . . . , m), and

let S1 be a partition of (a). Then QS1(P ) = m(S1).

Ex 3.6 (Observation). [QS(P ) for hooks] Let P = (p, 1b) |

p > 1. Then the map S → QS(P ) : S → Q(P ), is an

isomorphism of lattices.

Q0(P ) = P if p ≥ 3; Q0(P ) = (3, 1b−1) if p = 2.

Let S = ((1), R), T ∈ P(B). Then QS(P ) is obtained by

“adding” T to Q0(P ): add Ti− 1 to Q0(P )i, i = 1, 2, . . . until

the sum n is attained.

Ex P = (2, 14) (see Ex 3.7B). Q0(P ) = (3, 1, 1). S = (2, 2)

QS(P ) = (2, 2) + (3, 1, 1, 1) = (3 + 2− 1, 1 + 2− 1) = (4, 2)
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Ex 3.7. Hooks, p = 2.

A. P = (2, 13); S = 〈1〉 × 〈3〉 .

QS(P ) S

(5) (3)

(4, 1) (2, 1)

(3, 1, 1) (1, 1, 1)

B. P = (2, 14); S = 〈1〉 × 〈4〉 .

QS(P ) S

(6) (4)

(5, 1) (4, 2) (3, 1) (2, 2)

(4, 1, 1) (2, 1, 1)

(3, 13) (14)
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Ex 3.8. Hook: p = 3. P = (3, 14); S = 〈1〉 × 〈4〉 .

QS(P ) S

(6, 1) ←− (4)

(5, 1, 1) (4, 2, 1) ←− (3, 1) (2, 2)

(4, 1, 1, 1) ←− (2, 1, 1)

(3, 14) ←− (14)

Ex 3.9. P = (22, 13); S = 〈2〉 × 〈3〉 .

QS(P ) S

(7) ←− (2)× (3)

(5, 2) ←− (1, 1)× (3) (2)× (2, 1)

(4, 3) ←− (1, 1)× (2, 1)

(4, 2, 1) ←− (2)× (1, 1, 1)

(3, 3, 1) ←− (1, 1)× (1, 1, 1)

S(P ) → Q(P ) is not an isomorphism of POS.

((1, 1)×(2, 1) and (2)×(1, 1, 1) are incomparable in S(P ).)
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3.3 Questions: the involution ι and QS(P ).

a. To what extent is QS(P ) an invariant of the digraph D(A),

or digraph wih involution ι, for A generic in US(B)?

b. What other invariants of P are steps toward QS(P )?

c. Fix P . The condition of A being in π−1(Jr1, . . . , Jrk
) leads

to a different digraph-with-involutionD′ thanD for A generic

in UB. But the lengths of longest paths from i → j are un-

changed, as the matrix MX1 is in this fibre.

Is the S. Poljak calculation of partitions for the generic ma-

trices of digraphs D,D′ the same? And what is their relation

to Q(P )?

d. Can the ranks of Ak, A generic in UB be concluded from

those of certain powers (or powers and sums) of MX1?

e. Fix S = (S1, . . . , Sk). By regarding the intersection of

X1(P ) with π−1(JS1, . . . , JSk
), one can construct variables
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X1(S) and matrices MX1(S). Can the ranks of powers of

generic elements of the same fibres, be figured from the ranks

of powers and sums of MX1(S)?
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