A non-iterative rule for straightening fillings of Young diagrams

Reuven Hodges

University of lllinois at Urbana-Champaign

Combinatorial Algebra meets Algebraic Combinatorics 2020
Dalhousie University



Straightening



The ubiquity of Young diagrams and straightening

Fundamental combinatorial objects

® irreducible representations of the symmetric group S,
® polynomial irreducible representations of the general linear group GLy

® standard monomial basis for the space of sections of an ample line bundle on a
flag variety/Schubert variety



The ubiquity of Young diagrams and straightening

Fundamental combinatorial objects

® irreducible representations of the symmetric group S,
® polynomial irreducible representations of the general linear group GLy

® standard monomial basis for the space of sections of an ample line bundle on a
flag variety/Schubert variety

All of the above rely on a straightening process.
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Young diagrams

Fix n>2, [n] ={1,...,n}.

Defn. A partition is a sequence of positive integers A = ()1, ..., \) such that

A > > A

Visualize a partition by its Young diagram A, an upper left justified collection of boxes
with \; boxes in row i.

Example.
Let A = (4,2,2).
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Fillings of Young diagrams

Defn.

® A filling of shape X is an assignment of a value in [n] to each box of A
® A tableau is a filling such that values in columns increase strictly downwards

® A semistandard tableau is a tableau such that values in rows increase weakly left
to right

Example.

Let n=4 and A = (4,2,2).

Filling Tableau Semistandard Tableau
1]3[4]2] 2[1]4]1] 1]2]3]3]
212 312 3|3
2|1 413 414

z=1(2,4,1,1) z=1(2,2,2,2) z=1(1,1,4,2)

Defn. The content of a filling is a sequence of non-negative integers z = (zi, .

s 2Zn)
where z; equals the number of boxes equal to i in the filling.
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Fix a partition A and content z.

The sets

F(, z) is the set of fillings of shape A and content z.
U
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Vector spaces composed of fillings

Fix a partition A and content z.

The sets

F(, z) is the set of fillings of shape A and content z.
U
S(A, z) is the subset of semistandard tableau of shape A and content z.

The vector space

Let CF(™2) be the complex vector space with basis F(\, z2).



A subspace and its generators

The subspace
Let A(), z) be subspace of CF(*2) generated by

® Grassmannian sums: E 4+ F where E and F differ in a single column by a single
transposition
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A subspace and its generators

The subspace

Let A(), z) be subspace of CF(*2) generated by
® Grassmannian sums: E 4+ F where E and F differ in a single column by a single

transposition
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The fundamental theorem and straightening
Theorem. gYoung] The semistandard tableau in S(), z) form a basis of the factor
space CF(M2) /AN 2).

Expressing a filling in this basis is called straightening the filling.

Representation theory

For A with d boxes and z = (1,...,1), can define an action of Sy on CF(M2)/A(), 2).
This is the the irreducible Sy-representation associated to A.

For A with less than n+ 1 rows, we can also construct the GL,-representation
associated to A.

Classical Straightening Algorithms
® Prescribe a relation in A(), z) that rewrites a given (non-semistandard) filling as
a sum of other fillings that are smaller in some total order

® Proceed inductively

® Finite number of fillings - process terminates

Two problems.

(1) Theoretical: Iterative methods give almost no control over the coefficients that
arise. Even showing that a particular coefficient is nonzero is difficult.

(2) Computational: Straightening a filling with ~50 boxes can take hours on a
computer. Difficult to optimize (or parallelize).
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An example of a classical straightening algorithm

Let n=5, A =(2,2,1), and z=(1,1,1,1,1). We will straighten

2] [2[1] [2[1 1[4

413]= [3]4] + [4]5] + [2]5 j=1, m=2
5] 5] 3 3
2[1] [2[1 i[4

= [3]4] - [3]5] + [2]5 (3,4)
5] [4] 13




An example of a classical straightening algorithm

Let n=5, A =(2,2,1), and z=(1,1,1,1,1). We will straighten

1 2 2[1] [1[4
g 3[4] + [4[5] + [2]5
5] 5] 3] 13
2 2[1] [1[4
314] - [3]5] + [2]5
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An example of a classical straightening algorithm

Let n=5, A =(2,2,1), and z=(1,1,1,1,1). We will straighten

2] [2 2[1] [1[4
43| = [3[4] + [4]5| + [2]5 j=1, m=2
5] 5] 13] El
2 2[1] [1[4
314 —[3[5] + [2]5 (3,4)
5] 14] 13]
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An example of a classical straightening algorithm

Let n=5, A =(2,2,1), and z=(1,1,1,1,1). We will straighten

2] [2]1 2[1 1[4
4[3]= [3]4] + [4]5] + [2]5 j=1, m=2
5] 5] 3] 3]
211 [2]1 1[4
= [3]4] -[3[5| + [2]5 (3,4)
El 4] 3]
12 2[3 2[5] 12 2[3 2[4 1[4 1 me1
=34+14+34\7(35+15+35)+25 1:1’ -l
5 B O A B O 3] =
(1,2)
112] [1[3] [1[4 1[2] [1[3] [1[4 1[4] .
:34—24—25—(35—25+25)+25\ (13)8,;;,(45)
Z Z ;
El 5] 13] 4] 4] 3] 3] (13)(1.2)
12 2 113] [1[3] [1[4
= [3[4] — [3]5] — [2]4] + [2][5] — [2]5 simplify / reorder
5] 4] 5] 4] 3]




Non-iterative Straightening
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Rearrangement coefficients
Fix a partition ), content z, and F, S € F(}, z)

Defn. Let C(A) be the group of permutations that permute entries of a filling of
shape A\ within each column.

Example.
Let A = (4,2,2).

C(/\):S3><S3><51><51

Let m € C()).
® F; is the result of permuting the entries of F according to 7.

® sgn(m) equals the product of the signs of each permutation

Defn. The rearrangement coefficient of F w.r.t. S, Rfr s, is the sum of signs of all
7w € C(A) s.t. Fr has the same content in each row as S.



Rearrangement coefficients - example

Example.
Let A = (4,2,2) and z = (2,2,2,2) with

4]1]

2
21
F=|3[2
e

W[ N




Rearrangement coefficients - example

Example.

Let A = (4,2,2) and z = (2,2,2,2) with

2[1[4[1] 1[1[4]4]
F=[32 s=[2[2
73 33

We want to rearrange F into S. Forced to swap 2 and 4. Then swap 2 and 3. Then F
and S have the same content in each row. The sign of this permutation is then 1.

RFs =1



Rearrangement coefficients - example

Example.

Let A = (4,2,2) and z = (2,2,2,2) with

2[1]4]1] 1[1[4]4)
F=[3]2 s=[2]2
43 33

We want to rearrange F into S. Forced to swap 2 and 4. Then swap 2 and 3. Then F
and S have the same content in each row. The sign of this permutation is then 1.

RFs =1
Rs,rF=0. Why?
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An example of straightening via new method
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An example of straightening via new method

Let n =5, A= (2,2,1), and z=(1,1,1,1,1). The five semistandard tableau are

3 113 1[2] 1
5| S3=[2]4] Si=[3]5] Ss=[3|4
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Let n =5, A= (2,2,1), and z=(1,1,1,1,1). The five semistandard tableau are
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with S = Sp = S3 = S5 > Ss.
Then
Ds, := 51
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Ds, := S4 —Rs, 5, - Ds; — Rs, 5, - Ds, = Rs, 5, - Ds; = S
=S5 — Rs;,5, ' Ds; — Rs s, - Ds, — Rs; 55 - Ds, — Rsy,s, - Ds, = S5 — 51

=53 — Rs,,5 - Ds; —Rs;,s, - Ds, = S3

Ds,

We will now straighten

1(2
3] =RF,s - Ds, +REs, ' Ds, + Res; - Ds; + Res, - Ds, + RE,s; - Dsg

4
5]
:0~D51+1-D52—1-]D)53—1-]D)54+1-]D)55



An example of straightening via new method

Let n =5, A= (2,2,1), and z=(1,1,1,1,1). The five semistandard tableau are

3 113 1[2] 1
5| S3=[2]4] Si=[3]5] Ss=[3|4
5] 4] 5]

4]
5] S =

51 =

[w]no]=

‘-PI\)I—-\

with S = Sp = S3 = S5 > Ss.
Then
Ds, := 51
Ds, := 52 —Rsg,,s, - Ds; = 52
Ds,
Ds, := S4 —Rs, 5, - Ds; — Rs, 5, - Ds, = Rs, 5, - Ds; = S
=S5 — Rs;,5, ' Ds; — Rs s, - Ds, — Rs; 55 - Ds, — Rsy,s, - Ds, = S5 — 51

=53 — Rs,,5 - Ds; —Rs;,s, - Ds, = S3

Ds,

We will now straighten

1(2
3] =RF,s - Ds, +REs, ' Ds, + Res; - Ds; + Res, - Ds, + RE,s; - Dsg

4
El
:0~D51+1-D52—1-]D)53—1-]D)54+1-]D)55
=5-5%-5+5-5



Closing thoughts

Applications: Theory

Using this non-iterative formula we are able to extend a result of Lakshmibai-Gonciulea
that proves that the leading term when straightening is nonzero.



Closing thoughts

Applications: Theory

Using this non-iterative formula we are able to extend a result of Lakshmibai-Gonciulea
that proves that the leading term when straightening is nonzero.

Applications:Computational

Have implemented this algorithm in C. It seems to be several orders of magnitude
faster than traditional straightening.

Currently being used to compute multiplicites of GLg-irreps in the kernel of the
Hadamard-Howe map (related to Foulkes conjecture) extending results of
Cheung-lkenmeyer-Mkrtchyan.



Thank you!



	Straightening
	Non-iterative Straightening

