$q(t-F u p-$ Catalan sumbiors for firicte refection groups

Christion stump, UQAM

$$
\text { Jom. } 24,2010
$$

Ondrucis

Finite reflection groups
q, t-Fuß-Catalan numbers for real reflection groups

Algebraic Combinatorics - the extended Shi arrangement

Combinatorial Algebra - rational Cherednik algebras
q, t-Fuß-Catalan numbers for complex reflection groups

Finite real reflection groups Leroy real notoction Iconbs

Finite real reflection groups

Let V be a finite-dimensional real vector space.

- A (finite) real reflection group

$$
W=\left\langle t_{1}, \ldots, t_{\ell}\right\rangle \subseteq \mathrm{O}(V)
$$

is a finite group generated by reflections.

Irreducible real reflection groups

- The following list of root systems determine (up to isomorphisms) the irreducible finite real reflection groups:
$A_{n-1} \quad$ (symmetric group),
$B_{n} \quad$ (group of signed permutations),
$D_{n} \quad$ (group of even-signed permutations),
$I_{2}(k) \quad$ (dihedral group of order $2 k$) and $H_{3}, H_{4}, F_{4}, E_{6}, E_{7}, E_{8} \quad$ (exceptional groups).

The syommetric group

The most classical example of a reflection group is the symmetric group \mathcal{S}_{n} of all permutations of n letters.

$$
\begin{array}{rrr}
123=(), & 132=(23), & 213=(12) \\
231=(123), & 312=(132), & 321=(13)
\end{array}
$$

This group can be seen as the reflection group of type A_{n-1} :

$$
\begin{aligned}
\text { transposition } & \stackrel{\sim}{\longleftrightarrow} \text { reflection } \\
(i, j) & =e_{i} \leftrightarrow e_{j}
\end{aligned}
$$

simple transposition $\stackrel{\sim}{\longleftrightarrow}$ simple reflection

$$
(i, i+1)=e_{i} \leftrightarrow e_{i+1} .
$$

Finite complex reflection groups

Let V be a finite-dimensional complex vector space.

- A complex reflection $s \in U(V)$
i. has finite order and
ii. its fixed-point space has codimension 1.
- A (finite) complex reflection group

$$
W=\left\langle t_{1}, \ldots, t_{\ell}\right\rangle \subseteq O(V)
$$

is a finite group generated by complex reflections. Irreducible complex reflection groups are determined by the following types:

$$
\begin{array}{rl}
G(m, p, n) & \text { with } p \mid m \text { of order } m^{n} n!/ p \\
G_{4}-G_{37} & 34 \text { exceptional types. }
\end{array}
$$

(Shephard-Todd, Chevalley, 1950's)

The cyclic group

- It acts on \mathbb{C} by multiplication of a primitive root of unity ζ.

Reflections \longleftrightarrow Reflecting hyperplanes

- In real reflection groups, any reflection t has order two and there is a 1: 1-correspondence

$$
\begin{array}{ccc}
\{\text { reflections }\} & \stackrel{\sim}{\longleftrightarrow} & \text { \{reflecting hyperplanes }\} \\
t & \leftrightarrow & H_{\alpha}
\end{array}
$$

In complex reflection groups, any reflection t has order $k \geq 2$ and there is a correspondence
$\{$ reflections $\} \stackrel{\sim}{\longleftrightarrow}$ \{reflecting hyperplanes $\}$
$t, t^{2}, \ldots, t^{k-1} \leftrightarrow H_{\alpha}$.

Alternating polynomials

For a permutation $\sigma \in \mathcal{S}_{n}$, define a diagonal action on
$\mathbb{C}[\mathbf{x}, \mathbf{y}]:=\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]$ by $\sigma\left(x_{i}\right):=x_{\sigma(i)}, \sigma\left(y_{i}\right):=y_{\sigma(i)}$.
E.g.,

$$
231\left(2 x_{1} x_{2} y_{2}^{2} y_{3}\right)=2 x_{2} x_{3} y_{3}^{2} y_{1} .
$$

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\sigma(f)=f$,
- alternating if $\sigma(f)=\operatorname{sgn}(\sigma) f$.

Example
$x_{1} y_{2}+x_{2} y_{1}$ is invariant, $\quad x_{1} y_{2}-x_{2} y_{1}$ is alternating.

Alternating polynomials-Generalization

Let W be a real reflection group acting on V. The contragredient action of W on $V^{*}=\operatorname{Hom}(V, \mathbb{C})$ is given by

$$
\omega(\rho):=\rho \circ \omega^{-1}
$$

This gives an action of W on the symmetric algebra $S\left(V^{*}\right)=\mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a diagonal action on $\mathbb{C}[\mathbf{x}, \mathbf{y}]:=\mathbb{C}[V \oplus V]$.

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\omega(f)=f$,
- alternating if $\omega(f)=\operatorname{det}(\omega) f$.
qit-Fupl-Catalan mumbers

$q, t-F u ß-C a t a l a n$ numbers as a bigraded Hilbert series

Let W be a reflection group now acting on $\mathbb{C}[\mathbf{x}, \mathbf{y}]$ and let

$$
\mathcal{A}:=\langle\text { alternating polynomials }\rangle \unlhd \mathbb{C}[\mathbf{x}, \mathbf{y}] .
$$

Define the W-module $M^{(m)}(W)$ to be minimal generating space of the ideal \mathcal{A}^{m},

$$
M^{(m)}(W):=\mathcal{A}^{m} /\langle\mathbf{x}, \mathbf{y}\rangle \mathcal{A}^{m} \cong \mathbb{C} \mathcal{B},
$$

where \mathcal{B} is any homogeneous minimal generating set for \mathcal{A}^{m}. $M^{(m)}(W)$ sits inside a larger W-module $D R^{(m)}(W)$ as its isotypic component,

$$
M^{(m)}(W) \cong \mathbf{e}_{\operatorname{det}}\left(D R^{(m)}(W)\right)
$$

$q, t-F u ß-C a t a l a n$ numbers as a bigraded Hilbert series

Definition

For any real reflection group W, define $\mathbf{q}, \mathbf{t}-$ Fuß-Catalan numbers to be the bigraded Hilbert series of $M^{(m)}(W)$,

$$
\begin{aligned}
\operatorname{Cat}^{(m)}(W ; q, t) & :=\mathcal{H}\left(M^{(m)}(W) ; q, t\right) \\
& =\sum_{f \in \mathcal{B}} q^{\operatorname{deg}_{x}(f)} t^{\operatorname{deg}_{y}(f)}
\end{aligned}
$$

- Cat $^{(m)}(W ; q, t)$ is a symmetric polynomial in q and t,
- it reduces in type A_{n-1} to the classical q, t-Fuß-Catalan numbers,

$$
\mathrm{Cat}^{(m)}\left(\mathcal{S}_{n} ; q, t\right)=\mathrm{Cat}_{n}^{(m)}(q, t)
$$

introduced by Haiman in the 1990's.

Example: $\mathrm{Cat}^{(1)}\left(\mathcal{S}_{3} ; q, t\right)$

For $W=\mathcal{S}_{3}$, one can show that

$$
M^{(1)}\left(\mathcal{S}_{3}\right)=\mathbb{C}\left\{\begin{array}{c}
\Delta_{\{(1,0),(2,0)\}}, \Delta_{\{(1,0),(1,1)\}}, \Delta_{\{(0,1),(1,1)\}}, \\
\Delta_{\{(0,1),(0,2)\}}, \Delta_{\{(1,0),(0,1)\}}
\end{array}\right\},
$$

where

$$
\Delta_{\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\}}(\mathbf{x}, \mathbf{y}):=\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
x_{1}^{i_{1}} y_{1}^{j_{1}} & x_{2}^{i_{1}} y_{2}^{j_{1}} & x_{3}^{i_{1}} y_{3}^{j_{1}} \\
x_{1}^{i_{2}} y_{1}^{j_{2}} & x_{2}^{i_{2}} y_{2}^{j_{2}} & x_{3}^{i_{2}} y_{3}^{j_{2}}
\end{array}\right)
$$

is the generalized Vandermonde determinant. This gives

$$
\begin{aligned}
\operatorname{Cat}^{(1)}\left(\mathcal{S}_{3} ; q, t\right) & =\mathcal{H}\left(M^{(1)}\left(\mathcal{S}_{3}\right) ; q, t\right) \\
& =q^{3}+q^{2} t+q t^{2}+t^{3}+q t
\end{aligned}
$$

A conjectured formula for the dimension of $M^{(m)}(W)$

Computations of the dimensions of $M^{(m)}(W)$ were the first motivation for further investigations:

Conjecture

Let W be a real reflection group. Then

$$
\operatorname{Cat}^{(m)}(W ; 1,1)=\prod_{i=1}^{\ell} \frac{d_{i}+m h}{d_{i}},
$$

where

- ℓ is the rank of W,
- h is the Coxeter number and
- d_{1}, \ldots, d_{ℓ} are its degrees.

Fup-Catalon mumbers

- These numbers, called Fuß-Catalan numbers, count several combinatorial objects, e.g.,
- positive regions in the generalized Shi arrangement (Athanasiadis, Postnikov),
- m-divisible non-crossing partitions (Armstrong, Bessis, Reiner),
- facets in the generalized Cluster complex (Fomin, Reading, Zelevinsky).
- They reduce for $m=1$ to the well-known Catalan numbers associated to real reflection groups:

A_{n-1}	B_{n}	D_{n}
$\frac{1}{n+1}\binom{2 n}{n}$	$\binom{2 n}{n}$	$\binom{2 n}{n}-\binom{2(n-1)}{n-1}$

$l_{2}(k)$	H_{3}	H_{4}	F_{4}	E_{6}	E_{7}	E_{8}
$k+2$	32	280	105	833	4160	25080

The classical q, t-Fuß-Catalan numbers

In type A, Cat ${ }^{(m)}\left(\mathcal{S}_{n} ; q, t\right)$ occurred within the past 15 years in various fields of mathematics:

- Hilbert series of space of diagonal coinvariants (Haiman),
- complicated rational function in the context of modified Macdonald polynomials (Garsia, Haiman),
- Hilbert series of some cohomology module in the theory of Hilbert schemes of points in the plane (Haiman),
- they have a conjectured combinatorial interpretation in terms of two statistics on partitions fitting inside the partition $\mu:=((n-1) m, \ldots, 2 m, m)$,

$$
\operatorname{Cat}_{n}^{(m)}(q, t)=\sum_{\lambda \subseteq \mu} q^{\text {area }(\lambda)} t^{\text {bounce }(\lambda)}
$$

- Proved for $m=1$ (Garsia, Haglund) and for $t=1$ (Haiman).

LCombinatorics
The extended she arrangement

The extended Shi arrangement

Let W be a crystallographic reflection group.
Shi ${ }^{(m)}(W)$ is defined to be the collection of (translates of the reflecting) hyperplanes in V given by

$$
\left\{H_{\alpha}^{k}: \alpha \in \Phi^{+},-m<k \leq m\right\}
$$

where $H_{\alpha}^{k}=\{x \in V:(x, \alpha)=k\}$.

- A region of $\mathrm{Shi}^{(m)}(W)$ is a connected component of its complement.

Remark
Coxeter arrangement \subseteq extended Shi arrangement.

The extended Shi arrangement

Let W be a crystallographic reflection group.
Theorem (Yoshinaga)
The number of regions in $\operatorname{Shi}^{(m)}(W)$ is given by

$$
(m h+1)^{\ell} .
$$

Theorem (Athanasiadis)
The number of positive regions in $\mathrm{Shi}^{(m)}(W)$ - regions which lie in the fundamental chamber of the associated Coxeter arrangement - is given by

$$
\prod_{i=1}^{\ell} \frac{d_{i}+m h}{d_{i}}
$$

Example: $\operatorname{Shi}^{(1)}\left(A_{2}\right)$

$$
\mid\{\text { regions }\} \mid=16=(1 \cdot 3+1)^{2}
$$

$$
\mid\{\text { positive regions }\} \left\lvert\,=5=\frac{5 \cdot 6}{2 \cdot 3} .\right.
$$

Example: $\operatorname{Shi}^{(1)}\left(A_{2}\right)$ and $\operatorname{Cat}^{(1)}\left(A_{2} ; q\right)$

$\operatorname{Cat}^{(1)}\left(A_{2} ; q\right)=\sum q^{\operatorname{coh}(R)}=1+2 q+q^{2}+q^{3}$.

Specialization $t=1$.

Conjecture
Let W be a crystallographic reflection group. Then

$$
\operatorname{Cat}^{(m)}(W ; q, 1)=\sum q^{\operatorname{coh}(R)}
$$

where the sum ranges over all regions of $\operatorname{Shi}^{(m)}(\Phi)$ which lie in the fundamental chamber of the associated Coxeter arrangement and where coh denotes the coheight statistic.

- The conjecture is known to be true for type A,
- was validated by computations for several types.

Specialization $t=q^{-1}$.

Conjecture

Let W be a reflection group. Then

$$
\operatorname{Cat}^{(m)}\left(W ; q, q^{-1}\right)=q^{-m N} \prod_{i=1}^{\ell} \frac{\left[d_{i}+m h\right]_{q}}{\left[d_{i}\right]_{q}}
$$

where

- N is the number of reflections in W,
- $[n]_{q}:=q^{n-1}+\ldots+q+1$ is the usual q-analogue of n.

The dihedrel groupl

Theorem
Let W be the dihedral group of type $I_{2}(k)$. Then

$$
\operatorname{Cat}^{(m)}(W ; q, t)=\sum_{j=0}^{m} q^{m-j} t^{m-j}[j k+1]_{q, t},
$$

where

$$
[n]_{q, t}:=q^{n-1}+q^{n-2} t+\ldots+q t^{n-2}+t^{n-1}
$$

Theorem
All shown conjectures hold for the dihedral groups.

Rational Cleredwik afgebrar

Let W be a real reflection group. The rational Cherednik algebra

$$
\mathrm{H}_{c}=\mathrm{H}_{c}(W)
$$

is an associative algebra generated by

$$
V, V^{*}, W
$$

subject to defining relations depending on a rational parameter
c, such that

- the polynomial rings $\mathbb{C}[V], \mathbb{C}\left[V^{*}\right]$ and
- the group algebra $\mathbb{C} W$
are subalgebras of H_{c}.

A simple $\mathrm{H}_{c^{-}}$-module

For $c=m+\frac{1}{h}$ there exists a unique simple H_{c}-module L which carries a natural filtration.

Theorem (Berest, Etingof, Ginzburg)
Let W be a real reflection group. Then

$$
\begin{aligned}
\mathcal{H}(\operatorname{gr}(L) ; q) & =q^{-m N}[m h+1]_{q}^{\ell} \\
\mathcal{H}(\mathbf{e}(\operatorname{gr}(L)) ; q) & =q^{-m N} \prod_{i=1}^{\ell} \frac{\left[d_{i}+m h\right]_{q}}{\left[d_{i}\right]_{q}}
\end{aligned}
$$

where $\operatorname{gr}(L)$ is the associated graded module of L and where $\mathbf{e}(\operatorname{gr}(L))$ is its trivial component.

The connection between L and the space of generalized diagonal coinvariants

Theorem
Let W be a real reflection group and let

$$
D R^{(m)}(W)=\mathcal{A}^{m-1} / \mathcal{I} \mathcal{A}^{m-1}
$$

be the generalized diagonal coinvariants graded by degree in \mathbf{x} minus degree in \mathbf{y}. Then there exists a natural surjection of graded modules,

$$
D R^{(m)}(W) \otimes \operatorname{det} \rightarrow \operatorname{gr}(L)
$$

where det denotes the determinantal representation.

Remark

This theorem generalizes a theorem by Gordon, who proved the $m=1$ case, following mainly his approach.

The connection between L and the space of generalized diagonal coinvariants

Conjecture (Haiman)
The W-stable kernel of the surjection in the previous theorem does not contain a copy of the trivial representation.

Corollary
If the previous conjecture holds, then

$$
M^{(m)}(W) \cong \mathbf{e}(\operatorname{gr}(L))
$$

as graded modules. In particular,

$$
\operatorname{Cat}\left(W ; q, q^{-1}\right)=q^{-m N} \prod_{i=1}^{\ell} \frac{\left[d_{i}+m h\right]_{q}}{\left[d_{i}\right]_{q}}
$$

Finite complex $x^{\prime \prime}$ reflection groups

The cyclic group

The cyclic group $\mathcal{C}_{k}=\langle\zeta\rangle$ would act on $\mathbb{C}[x, y]:=\mathbb{C}[\mathbb{C} \oplus \mathbb{C}]$ by

$$
\zeta\left(x^{a} y^{b}\right)=\zeta^{a} \cdot x^{a} \zeta^{b} \cdot y^{b}=\zeta^{a+b} \cdot x^{a} y^{b} .
$$

This would give

$$
\begin{aligned}
\mathbb{C}[x, y]^{\mathcal{C}_{k}} & =\operatorname{span}\left\{x^{a} y^{b}: a+b \equiv 0 \bmod k\right\}, \\
\mathbb{C}[x, y]^{\text {det }} & =\operatorname{span}\left\{x^{a} y^{b}: a+b \equiv 1 \bmod k\right\} \\
& =x \mathbb{C}[x, y]^{\mathcal{C}_{k}}+y \mathbb{C}[x, y]^{\mathcal{C}_{k}}, \\
\mathbb{C}[x, y]^{\operatorname{det}^{-1}} & =\operatorname{span}\left\{x^{a} y^{b}: a+b \equiv k-1 \bmod k\right\} \\
& =\sum_{i+j=k-1} x^{i} y^{j} \mathbb{C}[x, y]^{\mathcal{C}_{k}} .
\end{aligned}
$$

The cyclic group

$$
\begin{aligned}
\mathbb{C}[x, y]^{\operatorname{det}} & =x \mathbb{C}[x, y]^{\mathcal{C}_{k}}+y \mathbb{C}[x, y]^{\mathcal{C}_{k}} \\
\mathbb{C}[x, y]^{\operatorname{det}^{-1}} & =\sum_{i+j=k-1} x^{i} y^{j} \mathbb{C}[x, y]^{\mathcal{C}_{k}}
\end{aligned}
$$

We would have two possible choices to define q, t-Catalan numbers for the cyclic group \mathcal{C}_{k} :

$$
\begin{aligned}
\operatorname{Cat}^{(1)}\left(\mathcal{C}_{k} ; q, t\right) & =q+t \quad \text { or } \\
\operatorname{Cat}^{(1)}\left(\mathcal{C}_{k} ; q, t\right) & =q^{k-1}+q^{k-2} t+\ldots+q t^{k-2}+t^{k-1}
\end{aligned}
$$

- Both choices would be in contradiction to the previously shown conjectures!

Alternating polynomials-Generalization

Let W be a real reflection group acting on V.
The contragredient action of W on $V^{*}=\operatorname{Hom}(V, \mathbb{C})$ is given by

$$
\omega(\rho):=\rho \circ \omega^{-1} .
$$

This gives an action of W on the symmetric algebra $S\left(V^{*}\right)=\mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a diagonal action on

$$
\mathbb{C}[\mathbf{x}, \mathbf{y}]:=\mathbb{C}[V \oplus V]
$$

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\omega(f)=f$ for all $\omega \in W$,
- alternating if $\omega(f)=\operatorname{det}(\omega) f$ for all $\omega \in W$.

Alternating polynomials-Generalization

Let W be a complex reflection group acting on V.
The contragredient action of W on $V^{*}=\operatorname{Hom}(V, \mathbb{C})$ is given by

$$
\omega(\rho):=\rho \circ \omega^{-1} .
$$

This gives an action of W on the symmetric algebra $S\left(V^{*}\right)=\mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a diagonal action on

$$
\mathbb{C}[\mathbf{x}, \mathbf{y}]:=\mathbb{C}\left[V \oplus V^{*}\right]
$$

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\omega(f)=f$ for all $\omega \in W$,
- alternating if $\omega(f)=\operatorname{det}(\omega) f$ for all $\omega \in W$.

The cyclic group

The cyclic group $\mathcal{C}_{k}=\langle\zeta\rangle$ would act on $\mathbb{C}[x, y]:=\mathbb{C}[\mathbb{C} \oplus \mathbb{C}]$ by

$$
\zeta\left(x^{a} y^{b}\right)=\zeta^{a} \cdot x^{a} \zeta^{b} \cdot y^{b}=\zeta^{a+b} \cdot x^{a} y^{b}
$$

The cyclic group

The cyclic group $\mathcal{C}_{k}=\langle\zeta\rangle \quad$ acts on $\mathbb{C}[x, y]:=\mathbb{C}\left[\mathbb{C} \oplus \mathbb{C}^{*}\right]$ by

$$
\zeta\left(x^{a} y^{b}\right)=\zeta^{a} \cdot x^{a} \zeta^{-b} \cdot y^{b}=\zeta^{a-b} \cdot x^{a} y^{b} .
$$

The cyclic group

The cyclic group $\mathcal{C}_{k}=\langle\zeta\rangle \quad$ acts \quad on $\mathbb{C}[x, y]:=\mathbb{C}\left[\mathbb{C} \oplus \mathbb{C}^{*}\right]$ by

This gives

$$
\zeta\left(x^{a} y^{b}\right)=\zeta^{a} \cdot x^{a} \zeta^{-b} \cdot y^{b}=\zeta^{a-b} \cdot x^{a} y^{b}
$$

$$
\begin{aligned}
\mathbb{C}[x, y]^{\mathcal{C}_{k}} & =\operatorname{span}\left\{x^{a} y^{b}: a \equiv b \bmod k\right\}, \\
\mathbb{C}[x, y]^{\text {det }} & =\operatorname{span}\left\{x^{a} y^{b}: a+1 \equiv b \bmod k\right\} \\
& =x \mathbb{C}[x, y]^{\mathcal{C}_{k}}+y^{k-1} \mathbb{C}[x, y]^{\mathcal{C}_{k}}, \\
\mathbb{C}[x, y]^{\operatorname{det}^{-1}} & =\operatorname{span}\left\{x^{a} y^{b}: a \equiv b+1 \bmod k\right\} \\
& =x^{k-1} \mathbb{C}[x, y]^{\mathcal{C}_{k}}+y \mathbb{C}[x, y]^{\mathcal{C}_{k}} .
\end{aligned}
$$

The cyclic group

The cyclic group $\mathcal{C}_{k}=\langle\zeta\rangle \quad$ acts \quad on $\mathbb{C}[x, y]:=\mathbb{C}\left[\mathbb{C} \oplus \mathbb{C}^{*}\right]$ by

$$
\begin{gathered}
\zeta\left(x^{a} y^{b}\right)=\zeta^{a} \cdot x^{a} \zeta^{-b} \cdot y^{b}=\zeta^{a-b} \cdot x^{a} y^{b} . \\
\mathbb{C}[x, y]^{\text {det }}=x \mathbb{C}[x, y]^{\mathcal{C}_{k}}+y^{k-1} \mathbb{C}[x, y]^{\mathcal{C}_{k}}, \\
\mathbb{C}[x, y]^{\operatorname{det}^{-1}}=x^{k-1} \mathbb{C}[x, y]^{\mathcal{C}_{k}}+y \mathbb{C}[x, y]^{\mathcal{C}_{k}} .
\end{gathered}
$$

Now, we have (beside interchanging the roles of q and t) only the following choice:

$$
\operatorname{Cat}^{(1)}\left(\mathcal{C}_{k} ; q, t\right):=q+t^{k-1} .
$$

The cyclic group

The cyclic group $\mathcal{C}_{k}=\langle\zeta\rangle \quad$ acts \quad on $\mathbb{C}[x, y]:=\mathbb{C}\left[\mathbb{C} \oplus \mathbb{C}^{*}\right]$ by

$$
\zeta\left(x^{a} y^{b}\right)=\zeta^{a} \cdot x^{a} \zeta^{-b} \cdot y^{b}=\zeta^{a-b} \cdot x^{a} y^{b} .
$$

Now, we have (beside interchanging the roles of x and y) only the following choice:

$$
\operatorname{Cat}^{(1)}\left(\mathcal{C}_{k} ; q, t\right):=q+t^{k-1}
$$

- The q-power equals the number of reflecting hyperplanes $N^{*}=1$ and the t-power equal the number of reflections $N=k-1$. We have

$$
\begin{aligned}
q^{N} \operatorname{Cat}^{(1)}\left(\mathcal{C}_{k} ; q, q^{-1}\right) & =q^{N^{*}} \operatorname{Cat}^{(1)}\left(\mathcal{C}_{k} ; q^{-1}, q\right) \\
& =1+q^{k}=[2 k]_{q} /[k]_{q}
\end{aligned}
$$

Finsl conyectruse

Conjecture

Let W be a well-generated complex reflection group. Then

$$
\begin{aligned}
q^{m N} \mathrm{Cat}^{(m)}\left(W ; q, q^{-1}\right) & =q^{m N^{*}} \mathrm{Cat}^{(m)}\left(W ; q^{-1}, q\right) \\
& =\prod_{i=1}^{\ell} \frac{\left[d_{i}+m h\right]_{q}}{\left[d_{i}\right]_{q}}
\end{aligned}
$$

where

- N is the number of reflections in W and where
- N^{*} is the number of reflecting hyperplanes.

