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Finite reflection groups

q, t-Fuß-Catalan numbers for real reflection groups

Algebraic Combinatorics – the extended Shi arrangement

Combinatorial Algebra – rational Cherednik algebras

q, t-Fuß-Catalan numbers for complex reflection groups





Finite real reflection groups

Let V be a finite-dimensional real vector space.

I A (finite) real reflection group

W = 〈t1, . . . , t`〉 ⊆ O(V )

is a finite group generated by reflections.
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I The following list of root systems determine (up to
isomorphisms) the irreducible finite real reflection groups:

An−1 (symmetric group),

Bn (group of signed permutations),

Dn (group of even-signed permutations),

I2(k) (dihedral group of order 2k) and

H3,H4,F4,E6,E7,E8 (exceptional groups).



The most classical example of a reflection group is the symmetric
group Sn of all permutations of n letters.

123 = (), 132 = (23), 213 = (12),

231 = (123), 312 = (132), 321 = (13).

This group can be seen as the reflection group of type An−1:

transposition ←̃→ reflection

(i , j) = ei ↔ ej

simple transposition ←̃→ simple reflection

(i , i + 1) = ei ↔ ei+1.





Finite complex reflection groups

Let V be a finite-dimensional complex vector space.

I A complex reflection s ∈ U(V )

i. has finite order and
ii. its fixed-point space has codimension 1.

I A (finite) complex reflection group

W = 〈t1, . . . , t`〉 ⊆ O(V )

is a finite group generated by complex reflections.

Irreducible complex reflection groups are determined by the
following types:

G (m, p, n) with p|m of order mnn!/p,

G4 − G37 34 exceptional types.

(Shephard–Todd, Chevalley, 1950’s)
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I It acts on C by multiplication of a primitive root of unity ζ.



I In real reflection groups, any reflection t has order two and
there is a 1 : 1-correspondence{

reflections
}
←̃→

{
reflecting hyperplanes

}
t ↔ Hα.

I In complex reflection groups, any reflection t has order
k ≥ 2 and there is a correspondence{

reflections
}
←̃→

{
reflecting hyperplanes

}
t, t2, . . . , tk−1 ↔ Hα.



For a permutation σ ∈ Sn, define a diagonal action on
C[x, y] := C[x1, y1, . . . , xn, yn] by σ(xi ) := xσ(i), σ(yi ) := yσ(i).
E.g.,

231(2x1x2y2
2 y3) = 2x2x3y2

3 y1.

A polynomial f ∈ C[x, y] is called

I invariant if σ(f ) = f ,

I alternating if σ(f ) = sgn(σ) f .

Example

x1y2 + x2y1 is invariant, x1y2 − x2y1 is alternating.



−Generalization

Let W be a real reflection group acting on V . The
contragredient action of W on V ∗ = Hom(V ,C) is given by

ω(ρ) := ρ ◦ ω−1.

This gives an action of W on the symmetric algebra S(V ∗) = C[x]
and ’doubling up’ this action gives a diagonal action on
C[x, y] := C[V ⊕ V ].

A polynomial f ∈ C[x, y] is called

I invariant if ω(f ) = f ,

I alternating if ω(f ) = det(ω) f .





q, t-Fuß-Catalan numbers as a bigraded Hilbert series

Let W be a reflection group now acting on C[x, y] and let

A := 〈 alternating polynomials 〉 E C[x, y].

Define the W -module M(m)(W ) to be minimal generating space
of the ideal Am,

M(m)(W ) := Am/〈x, y〉Am ∼= CB,

where B is any homogeneous minimal generating set for Am.

M(m)(W ) sits inside a larger W -module DR(m)(W ) as its isotypic
component,

M(m)(W ) ∼= edet

(
DR(m)(W )

)
.



q, t-Fuß-Catalan numbers as a bigraded Hilbert series

Definition
For any real reflection group W , define q, t-Fuß-Catalan
numbers to be the bigraded Hilbert series of M(m)(W ),

Cat(m)(W ; q, t) := H(M(m)(W ); q, t)

=
∑
f ∈B

qdegx(f )tdegy(f ).

I Cat(m)(W ; q, t) is a symmetric polynomial in q and t,

I it reduces in type An−1 to the classical q, t-Fuß-Catalan
numbers,

Cat(m)(Sn; q, t) = Cat
(m)
n (q, t)

introduced by Haiman in the 1990’s.



Example: Cat(1)(S3; q, t)

For W = S3, one can show that

M(1)(S3) = C
{

∆{(1,0),(2,0)},∆{(1,0),(1,1)},∆{(0,1),(1,1)},

∆{(0,1),(0,2)},∆{(1,0),(0,1)}

}
,

where

∆{(i1,j1),(i2,j2)}(x, y) := det

 1 1 1

x i1
1 y j1

1 x i1
2 y j1

2 x i1
3 y j1

3

x i2
1 y j2

1 x i2
2 y j2

2 x i2
3 y j2

3


is the generalized Vandermonde determinant. This gives

Cat(1)(S3; q, t) = H(M(1)(S3); q, t)

= q3 + q2t + qt2 + t3 + qt.



A conjectured formula for the dimension of M (m)(W )

Computations of the dimensions of M(m)(W ) were the first
motivation for further investigations:

Conjecture

Let W be a real reflection group. Then

Cat(m)(W ; 1, 1) =
∏̀
i=1

di + mh

di
,

where

I ` is the rank of W ,

I h is the Coxeter number and

I d1, . . . , d` are its degrees.



I These numbers, called Fuß-Catalan numbers, count several
combinatorial objects, e.g.,

I positive regions in the generalized Shi arrangement
(Athanasiadis, Postnikov),

I m-divisible non-crossing partitions (Armstrong, Bessis,
Reiner),

I facets in the generalized Cluster complex (Fomin, Reading,
Zelevinsky).

I They reduce for m = 1 to the well-known Catalan numbers
associated to real reflection groups:

An−1 Bn Dn
1

n+1

(2n
n

) (2n
n

) (2n
n

)
−
(2(n−1)

n−1

)
I2(k) H3 H4 F4 E6 E7 E8

k + 2 32 280 105 833 4160 25080



The classical q, t-Fuß-Catalan numbers

In type A, Cat(m)(Sn; q, t) occurred within the past 15 years in
various fields of mathematics:

I Hilbert series of space of diagonal coinvariants (Haiman),

I complicated rational function in the context of modified
Macdonald polynomials (Garsia, Haiman),

I Hilbert series of some cohomology module in the theory of
Hilbert schemes of points in the plane (Haiman),

I they have a conjectured combinatorial interpretation in terms
of two statistics on partitions fitting inside the partition
µ := ((n − 1)m, . . . , 2m,m),

Cat
(m)
n (q, t) =

∑
λ⊆µ

qarea(λ)tbounce(λ).

I Proved for m = 1 (Garsia, Haglund) and for t = 1 (Haiman).





The extended Shi arrangement

Let W be a crystallographic reflection group.

Shi(m)(W ) is defined to be the collection of (translates of the
reflecting) hyperplanes in V given by{

Hk
α : α ∈ Φ+,−m < k ≤ m

}
,

where Hk
α = {x ∈ V : (x , α) = k}.

I A region of Shi(m)(W ) is a connected component of its
complement.

Remark

Coxeter arrangement ⊆ extended Shi arrangement.



The extended Shi arrangement

Let W be a crystallographic reflection group.

Theorem (Yoshinaga)

The number of regions in Shi(m)(W ) is given by

(mh + 1)`.

Theorem (Athanasiadis)

The number of positive regions in Shi(m)(W ) – regions which lie
in the fundamental chamber of the associated Coxeter
arrangement – is given by

∏̀
i=1

di + mh

di
.



Example: Shi(1)(A2)
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H1
α1∣∣∣{ regions

}∣∣∣ = 16 = (1 · 3 + 1)2,∣∣∣{ positive regions
}∣∣∣ = 5 =

5 · 6
2 · 3

.



Example: Shi(1)(A2) and Cat(1)(A2; q)

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q
Q
Q

s 0

0

1

1

0

2

2

1

3

1

0

2

0

1

1
0

R0�

H0
α2

H1
α2

H0
α3

H1
α3

H0
α1

H1
α1

Cat(1)(A2; q) =
∑

qcoh(R) = 1 + 2q + q2 + q3.



Specialization t = 1.

Conjecture

Let W be a crystallographic reflection group. Then

Cat(m)(W ; q, 1) =
∑

qcoh(R),

where the sum ranges over all regions of Shi(m)(Φ) which lie in the
fundamental chamber of the associated Coxeter arrangement
and where coh denotes the coheight statistic.

I The conjecture is known to be true for type A,

I was validated by computations for several types.



Specialization t = q−1.

Conjecture

Let W be a reflection group. Then

Cat(m)(W ; q, q−1) = q−mN
∏̀
i=1

[di + mh]q
[di ]q

,

where

I N is the number of reflections in W ,

I [n]q := qn−1 + . . .+ q + 1 is the usual q-analogue of n.



Theorem
Let W be the dihedral group of type I2(k). Then

Cat(m)(W ; q, t) =
m∑

j=0

qm−j tm−j [ jk + 1]q,t ,

where

[n]q,t := qn−1 + qn−2t + . . .+ qtn−2 + tn−1.

Theorem
All shown conjectures hold for the dihedral groups.





Let W be a real reflection group. The rational Cherednik algebra

Hc = Hc(W )

is an associative algebra generated by

V ,V ∗,W ,

subject to defining relations depending on a rational parameter
c , such that

I the polynomial rings C[V ],C[V ∗] and

I the group algebra CW

are subalgebras of Hc .



A simple Hc-module

For c = m + 1
h there exists a unique simple Hc -module L which

carries a natural filtration.

Theorem (Berest, Etingof, Ginzburg)

Let W be a real reflection group. Then

H(gr(L); q) = q−mN [mh + 1]`q,

H(e(gr(L)); q) = q−mN
∏̀
i=1

[di + mh]q
[di ]q

,

where gr(L) is the associated graded module of L and where
e(gr(L)) is its trivial component.



The connection between L and the space of generalized
diagonal coinvariants

Theorem
Let W be a real reflection group and let

DR(m)(W ) = Am−1/IAm−1

be the generalized diagonal coinvariants graded by degree in x
minus degree in y. Then there exists a natural surjection of
graded modules,

DR(m)(W )⊗ det� gr(L),

where det denotes the determinantal representation.

Remark
This theorem generalizes a theorem by Gordon, who proved the
m = 1 case, following mainly his approach.



The connection between L and the space of generalized
diagonal coinvariants

Conjecture (Haiman)

The W -stable kernel of the surjection in the previous theorem does
not contain a copy of the trivial representation.

Corollary

If the previous conjecture holds, then

M(m)(W ) ∼= e(gr(L))

as graded modules. In particular,

Cat(W ; q, q−1) = q−mN
∏̀
i=1

[di + mh]q
[di ]q

.





The cyclic group Ck = 〈ζ〉 would act on C[x , y ] := C[C⊕ C] by

ζ(xayb) = ζa · xa ζb · yb = ζa+b · xayb.

This would give

C[x , y ]Ck = span
{

xayb : a + b ≡ 0 mod k
}
,

C[x , y ]det = span
{

xayb : a + b ≡ 1 mod k
}

= xC[x , y ]Ck + yC[x , y ]Ck ,

C[x , y ]det−1

= span
{

xayb : a + b ≡ k − 1 mod k
}

=
∑

i+j=k−1

x iy jC[x , y ]Ck .



C[x , y ]det = xC[x , y ]Ck + yC[x , y ]Ck ,

C[x , y ]det−1

=
∑

i+j=k−1

x iy jC[x , y ]Ck .

We would have two possible choices to define q, t-Catalan numbers
for the cyclic group Ck :

Cat(1)(Ck ; q, t) = q + t or

Cat(1)(Ck ; q, t) = qk−1 + qk−2t + . . .+ qtk−2 + tk−1.

I Both choices would be in contradiction to the previously
shown conjectures!



−Generalization

Let W be a real reflection group acting on V .
The contragredient action of W on V ∗ = Hom(V ,C) is given by

ω(ρ) := ρ ◦ ω−1.

This gives an action of W on the symmetric algebra S(V ∗) = C[x]
and ‘doubling up’ this action gives a diagonal action on

C[x, y] := C[V ⊕ V ].

A polynomial f ∈ C[x, y] is called

I invariant if ω(f ) = f for all ω ∈W ,

I alternating if ω(f ) = det(ω) f for all ω ∈W .



−Generalization

Let W be a complex reflection group acting on V .
The contragredient action of W on V ∗ = Hom(V ,C) is given by

ω(ρ) := ρ ◦ ω−1.

This gives an action of W on the symmetric algebra S(V ∗) = C[x]
and ’doubling up’ this action gives a diagonal action on

C[x, y] := C[V ⊕ V ∗].

A polynomial f ∈ C[x, y] is called

I invariant if ω(f ) = f for all ω ∈W ,

I alternating if ω(f ) = det(ω) f for all ω ∈W .



The cyclic group Ck = 〈ζ〉 would act on C[x , y ] := C[C⊕ C] by

ζ(xayb) = ζa · xa ζb · yb = ζa+b · xayb.



The cyclic group Ck = 〈ζ〉 acts on C[x , y ] := C[C⊕ C∗] by

ζ(xayb) = ζa · xa ζ−b · yb = ζa−b · xayb.



The cyclic group Ck = 〈ζ〉 acts on C[x , y ] := C[C⊕ C∗] by

ζ(xayb) = ζa · xa ζ−b · yb = ζa−b · xayb.
This gives

C[x , y ]Ck = span
{

xayb : a ≡ b mod k
}
,

C[x , y ]det = span
{

xayb : a + 1 ≡ b mod k
}

= xC[x , y ]Ck + yk−1C[x , y ]Ck ,

C[x , y ]det−1

= span
{

xayb : a ≡ b + 1 mod k
}

= xk−1C[x , y ]Ck + yC[x , y ]Ck .



The cyclic group Ck = 〈ζ〉 acts on C[x , y ] := C[C⊕ C∗] by

ζ(xayb) = ζa · xa ζ−b · yb = ζa−b · xayb.

C[x , y ]det = xC[x , y ]Ck + yk−1C[x , y ]Ck ,

C[x , y ]det−1

= xk−1C[x , y ]Ck + yC[x , y ]Ck .

Now, we have (beside interchanging the roles of q and t) only the
following choice:

Cat(1)(Ck ; q, t) := q + tk−1.



The cyclic group Ck = 〈ζ〉 acts on C[x , y ] := C[C⊕ C∗] by

ζ(xayb) = ζa · xa ζ−b · yb = ζa−b · xayb.

Now, we have (beside interchanging the roles of x and y) only the
following choice:

Cat(1)(Ck ; q, t) := q + tk−1.

I The q-power equals the number of reflecting hyperplanes
N∗ = 1 and the t-power equal the number of reflections
N = k − 1. We have

qN Cat(1)(Ck ; q, q−1) = qN∗
Cat(1)(Ck ; q−1, q)

= 1 + qk = [2k]q/[k]q.



Conjecture

Let W be a well-generated complex reflection group. Then

qmN Cat(m)(W ; q, q−1) = qmN∗
Cat(m)(W ; q−1, q)

=
∏̀
i=1

[di + mh]q
[di ]q

,

where

I N is the number of reflections in W and where

I N∗ is the number of reflecting hyperplanes.


