git - Fup - Catalan mumbers for finite reflection groups

Christian Stump, UQAM

7am. 24, 2010

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Finite reflection groups

q, t-Fuß-Catalan numbers for real reflection groups

Algebraic Combinatorics - the extended Shi arrangement

Combinatorial Algebra - rational Cherednik algebras

q, t-Fuß-Catalan numbers for complex reflection groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Finite real reflection groups

Fuite word reflection groups

Finite real reflection groups

- Let V be a finite-dimensional real vector space.
 - A (finite) real reflection group

$$W = \langle t_1, \ldots, t_\ell \rangle \subseteq \mathsf{O}(V)$$

is a finite group generated by reflections.

Irreducible real reflection groups

The following list of root systems determine (up to isomorphisms) the irreducible finite real reflection groups:

 $\begin{array}{lll} A_{n-1} & (\text{symmetric group}), \\ & B_n & (\text{group of signed permutations}), \\ & D_n & (\text{group of even-signed permutations}), \\ & I_2(k) & (\text{dihedral group of order } 2k) \text{ and} \\ & H_3, H_4, F_4, E_6, E_7, E_8 & (\text{exceptional groups}). \end{array}$

The symmetric group

The most classical example of a reflection group is the symmetric group S_n of all permutations of *n* letters.

$$123 = (), \quad 132 = (23), \quad 213 = (12),$$

 $231 = (123), \quad 312 = (132), \quad 321 = (13).$

This group can be seen as the **reflection group** of type A_{n-1} :

$$\begin{array}{rccc} \textit{transposition} & \stackrel{\sim}{\longleftarrow} & \textit{reflection} \\ & (i,j) & = & e_i \leftrightarrow e_j \\ \textit{simple transposition} & \stackrel{\sim}{\longleftarrow} & \textit{simple reflection} \\ & (i,i+1) & = & e_i \leftrightarrow e_{i+1}. \end{array}$$

Finite complex reflection groups

Let V be a finite-dimensional **complex** vector space.

- A complex reflection $s \in U(V)$
 - i. has finite order and
 - ii. its fixed-point space has codimension 1.
- A (finite) complex reflection group

$$W = \langle t_1, \ldots, t_\ell \rangle \subseteq O(V)$$

is a finite group generated by complex reflections.

Irreducible complex reflection groups are determined by the following types:

$$\begin{array}{ll} G(m,p,n) & \mbox{ with } p | m \mbox{ of order } m^n n! / p, \\ G_4 - G_{37} & \mbox{ 34 exceptional types.} \end{array}$$

(Shephard-Todd, Chevalley, 1950's)

• It acts on \mathbb{C} by multiplication of a **primitive root of unity** ζ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Reflections and Reflecting hyper mes

In real reflection groups, any reflection t has order two and there is a 1 : 1-correspondence

$$\left\{ \begin{array}{rcl} \text{reflections} \end{array} \right\} & \stackrel{\sim}{\longleftrightarrow} & \left\{ \begin{array}{rcl} \text{reflecting hyperplanes} \end{array} \right\} \\ t & \leftrightarrow & H_{\alpha}. \end{array}$$

In complex reflection groups, any reflection t has order k ≥ 2 and there is a correspondence

$$\{ \text{ reflections} \} \stackrel{\sim}{\longleftrightarrow} \{ \text{ reflecting hyperplanes} \}$$

 $t, t^2, \dots, t^{k-1} \leftrightarrow H_{\alpha}.$

For a **permutation** $\sigma \in S_n$, define a **diagonal action** on $\mathbb{C}[\mathbf{x}, \mathbf{y}] := \mathbb{C}[x_1, y_1, \dots, x_n, y_n]$ by $\sigma(x_i) := x_{\sigma(i)}, \sigma(y_i) := y_{\sigma(i)}$. E.g.,

$$231(2x_1x_2y_2^2y_3) = 2x_2x_3y_3^2y_1.$$

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\sigma(f) = f$,
- alternating if $\sigma(f) = \operatorname{sgn}(\sigma) f$.

Example

 $x_1y_2 + x_2y_1$ is invariant, $x_1y_2 - x_2y_1$ is alternating.

Alternating polynomials-Generalization

Let *W* be a real reflection group acting on *V*. The **contragredient action** of *W* on $V^* = \text{Hom}(V, \mathbb{C})$ is given by

$$\omega(\rho) := \rho \circ \omega^{-1}.$$

This gives an action of W on the symmetric algebra $S(V^*) = \mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a **diagonal action** on $\mathbb{C}[\mathbf{x}, \mathbf{y}] := \mathbb{C}[V \oplus V].$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\omega(f) = f$,
- alternating if $\omega(f) = \det(\omega) f$.

9.t - Fup - Catalan mubers

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ のへで

q, t-Fuß-Catalan numbers as a bigraded Hilbert series

Let ${\it W}$ be a reflection group now acting on $\mathbb{C}[{\bf x}, {\bf y}]$ and let

 $\mathcal{A} := \langle \text{ alternating polynomials } \rangle \trianglelefteq \mathbb{C}[\mathbf{x}, \mathbf{y}].$

Define the *W*-module $M^{(m)}(W)$ to be minimal generating space of the ideal \mathcal{A}^m ,

$$M^{(m)}(W) := \mathcal{A}^m / \langle \mathbf{x}, \mathbf{y} \rangle \mathcal{A}^m \cong \mathbb{C}\mathcal{B},$$

where \mathcal{B} is any homogeneous minimal generating set for \mathcal{A}^m . $\mathcal{M}^{(m)}(W)$ sits inside a larger *W*-module $DR^{(m)}(W)$ as its isotypic component,

$$M^{(m)}(W) \cong \mathbf{e}_{det}(DR^{(m)}(W)).$$

q, t-Fuß-Catalan numbers as a bigraded Hilbert series

Definition

For any real reflection group W, define **q**, **t**-**FuB-Catalan numbers** to be the bigraded Hilbert series of $M^{(m)}(W)$,

$$Cat^{(m)}(W; q, t) := \mathcal{H}(M^{(m)}(W); q, t)$$
$$= \sum_{f \in \mathcal{B}} q^{\deg_{x}(f)} t^{\deg_{y}(f)}.$$

- Cat^(m)(W; q, t) is a symmetric polynomial in q and t,
- ▶ it reduces in type A_{n-1} to the classical q, t-FuB-Catalan numbers,

$$\operatorname{Cat}^{(m)}(\mathcal{S}_n;q,t) = \operatorname{Cat}_n^{(m)}(q,t)$$

introduced by Haiman in the 1990's.

Example: $Cat^{(1)}(\mathcal{S}_3; q, t)$

For $W = S_3$, one can show that

$$M^{(1)}(\mathcal{S}_3) = \mathbb{C} \left\{ \begin{array}{c} \Delta_{\{(1,0),(2,0)\}}, \Delta_{\{(1,0),(1,1)\}}, \Delta_{\{(0,1),(1,1)\}}, \\ \Delta_{\{(0,1),(0,2)\}}, \Delta_{\{(1,0),(0,1)\}} \end{array} \right\},$$

where

$$\Delta_{\{(i_1,j_1),(i_2,j_2)\}}(\mathbf{x},\mathbf{y}) := \det \begin{pmatrix} 1 & 1 & 1 \\ x_1^{i_1}y_1^{j_1} & x_2^{i_1}y_2^{j_1} & x_3^{i_1}y_3^{j_1} \\ x_1^{i_2}y_1^{j_2} & x_2^{i_2}y_2^{j_2} & x_3^{i_2}y_3^{j_2} \end{pmatrix}$$

is the generalized Vandermonde determinant. This gives

$$Cat^{(1)}(S_3; q, t) = \mathcal{H}(M^{(1)}(S_3); q, t)$$

= $q^3 + q^2t + qt^2 + t^3 + qt$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

A conjectured formula for the dimension of $M^{(m)}(W)$

Computations of the **dimensions** of $M^{(m)}(W)$ were the first motivation for further investigations:

Conjecture

Let W be a real reflection group. Then

$$\mathsf{Cat}^{(m)}(W; 1, 1) = \prod_{i=1}^{\ell} \frac{d_i + mh}{d_i},$$

where

- $\blacktriangleright \ l \text{ is the rank of } W,$
- h is the Coxeter number and
- d_1, \ldots, d_ℓ are its **degrees**.

Fup-Catalan numbers

- These numbers, called Fuß-Catalan numbers, count several combinatorial objects, e.g.,
 - positive regions in the generalized Shi arrangement (Athanasiadis, Postnikov),
 - m-divisible non-crossing partitions (Armstrong, Bessis, Reiner),
 - facets in the generalized Cluster complex (Fomin, Reading, Zelevinsky).
- They reduce for m = 1 to the well-known Catalan numbers associated to real reflection groups:

A_{n-1}	B _n	D _n
$\frac{1}{n+1}\binom{2n}{n}$	$\binom{2n}{n}$	$\binom{2n}{n} - \binom{2(n-1)}{n-1}$

$I_2(k)$	H_3	H_4	F_4	E_6	E ₇	E ₈
<i>k</i> +2	32	280	105	833	4160	25080

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

The classical q, t-Fuß-Catalan numbers

In type A, $Cat^{(m)}(S_n; q, t)$ occurred within the past 15 years in various fields of mathematics:

- Hilbert series of space of diagonal coinvariants (Haiman),
- complicated rational function in the context of modified Macdonald polynomials (Garsia, Haiman),
- Hilbert series of some cohomology module in the theory of Hilbert schemes of points in the plane (Haiman),
- ► they have a conjectured combinatorial interpretation in terms of two statistics on partitions fitting inside the partition µ := ((n − 1)m,..., 2m, m),

$$\operatorname{Cat}_n^{(m)}(q,t) = \sum_{\lambda \subseteq \mu} q^{\operatorname{area}(\lambda)} t^{\operatorname{bounce}(\lambda)}.$$

• Proved for m = 1 (Garsia, Haglund) and for t = 1 (Haiman).

L Combinatorics

The extended Shi arrangement

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

The extended Shi arrangement

Let W be a crystallographic reflection group.

 $\operatorname{Shi}^{(m)}(W)$ is defined to be the collection of (translates of the reflecting) hyperplanes in V given by

$$\big\{H_{\alpha}^{k}: \alpha \in \Phi^{+}, -m < k \leq m\big\},\$$

where $H_{\alpha}^{k} = \{x \in V : (x, \alpha) = k\}.$

A region of Shi^(m)(W) is a connected component of its complement.

Remark

Coxeter arrangement \subseteq extended Shi arrangement.

The extended Shi arrangement

Let W be a crystallographic reflection group.

Theorem (Yoshinaga)

The number of regions in $Shi^{(m)}(W)$ is given by

 $(mh+1)^{\ell}$.

Theorem (Athanasiadis)

The number of **positive regions** in $Shi^{(m)}(W)$ – regions which lie in the **fundamental chamber** of the associated Coxeter arrangement – is given by

$$\prod_{i=1}^{\ell} \frac{d_i + mh}{d_i}$$

Example: $\operatorname{Shi}^{(1)}(A_2)$ and $\operatorname{Cat}^{(1)}(A_2; q)$

◆□> ◆□> ◆目> ◆目> ◆目> ○ Q Q ()

Specialization t = 1.

Conjecture

Let W be a crystallographic reflection group. Then

$$\mathsf{Cat}^{(m)}(W;q,1) = \sum q^{\mathsf{coh}(R)},$$

where the sum ranges over all regions of $\text{Shi}^{(m)}(\Phi)$ which lie in the **fundamental chamber** of the associated Coxeter arrangement and where coh denotes the **coheight statistic**.

- The conjecture is known to be true for type A,
- was validated by computations for several types.

Specialization $t = q^{-1}$.

Conjecture

Let W be a reflection group. Then

$$Cat^{(m)}(W; q, q^{-1}) = q^{-mN} \prod_{i=1}^{\ell} \frac{[d_i + mh]_q}{[d_i]_q},$$

where

- ► *N* is the number of reflections in *W*,
- $[n]_q := q^{n-1} + \ldots + q + 1$ is the usual q-analogue of n.

・ロト ・ 理 ・ エ = ・ ・ 目 ・ うらつ

The dihedral groups

Theorem

Let W be the dihedral group of type $I_2(k)$. Then

$$Cat^{(m)}(W; q, t) = \sum_{j=0}^{m} q^{m-j} t^{m-j} [jk+1]_{q,t},$$

where

$$[n]_{q,t} := q^{n-1} + q^{n-2}t + \ldots + qt^{n-2} + t^{n-1}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem

All shown conjectures hold for the dihedral groups.

Rational Chereduik algebras

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ のへで

Let W be a real reflection group. The rational Cherednik algebra

 $\mathsf{H}_c=\mathsf{H}_c(W)$

is an associative algebra generated by

 $V, V^*, W,$

subject to **defining relations** depending on a **rational parameter** *c*, such that

- the polynomial rings $\mathbb{C}[V], \mathbb{C}[V^*]$ and
- the group algebra $\mathbb{C}W$

are subalgebras of H_c .

A simple H_c-module

For $c = m + \frac{1}{h}$ there exists a unique simple H_c-module L which carries a natural filtration.

Theorem (Berest, Etingof, Ginzburg) Let W be a real reflection group. Then

$$\mathcal{H}(\operatorname{gr}(L);q) = q^{-mN}[mh+1]_q^\ell,$$

$$\mathcal{H}(\mathbf{e}(\operatorname{gr}(L));q) = q^{-mN}\prod_{i=1}^\ell \frac{[d_i+mh]_q}{[d_i]_q},$$

where gr(L) is the associated graded module of L and where e(gr(L)) is its trivial component.

The connection between L and the space of generalized diagonal coinvariants

Theorem Let W be a real reflection group and let

$$DR^{(m)}(W) = \mathcal{A}^{m-1}/\mathcal{I}\mathcal{A}^{m-1}$$

be the **generalized diagonal coinvariants** graded by degree in **x** minus degree in **y**. Then there exists a natural **surjection of graded modules**,

$$DR^{(m)}(W) \otimes \det \twoheadrightarrow \operatorname{gr}(L),$$

where det denotes the determinantal representation.

Remark

This theorem generalizes a theorem by Gordon, who proved the m = 1 case, following mainly his approach.

The connection between L and the space of generalized diagonal coinvariants

Conjecture (Haiman)

The W-stable kernel of the surjection in the previous theorem does not contain a copy of the trivial representation.

Corollary

If the previous conjecture holds, then

$$M^{(m)}(W)\cong {f e}({
m gr}(L))$$

as graded modules. In particular,

$$\mathsf{Cat}(W;q,q^{-1}) = q^{-mN} \prod_{i=1}^{\ell} \frac{[d_i + mh]_q}{[d_i]_q}.$$

◆□ > ◆圖 > ◆臣 > ◆臣 > □ ■ ○ の Q @

The cyclic group $\mathcal{C}_k = \langle \zeta \rangle$ would act on $\mathbb{C}[x, y] := \mathbb{C}[\mathbb{C} \oplus \mathbb{C}]$ by

$$\zeta(x^a y^b) = \zeta^a \cdot x^a \ \zeta^b \cdot y^b = \zeta^{a+b} \cdot x^a y^b.$$

This would give

$$\mathbb{C}[x,y]^{\mathcal{C}_k} = \operatorname{span} \left\{ x^a y^b : a + b \equiv 0 \mod k \right\},\$$

$$\mathbb{C}[x, y]^{det} = \operatorname{span} \left\{ x^{a} y^{b} : a + b \equiv 1 \mod k \right\}$$
$$= x \mathbb{C}[x, y]^{\mathcal{C}_{k}} + y \mathbb{C}[x, y]^{\mathcal{C}_{k}},$$

$$\mathbb{C}[x, y]^{\det^{-1}} = \operatorname{span} \left\{ x^{a} y^{b} : a + b \equiv k - 1 \mod k \right\}$$
$$= \sum_{i+j=k-1} x^{i} y^{j} \mathbb{C}[x, y]^{\mathcal{C}_{k}}.$$

◆□> ◆圖> ◆国> ◆国> 三臣

$$\mathbb{C}[x,y]^{\mathsf{det}} = x\mathbb{C}[x,y]^{\mathcal{C}_k} + y\mathbb{C}[x,y]^{\mathcal{C}_k},$$
$$\mathbb{C}[x,y]^{\mathsf{det}^{-1}} = \sum_{i+j=k-1} x^i y^j \mathbb{C}[x,y]^{\mathcal{C}_k}.$$

We would have two possible choices to define q, t-Catalan numbers for the cyclic group C_k :

$$\operatorname{Cat}^{(1)}(\mathcal{C}_k; q, t) = q + t$$
 or
 $\operatorname{Cat}^{(1)}(\mathcal{C}_k; q, t) = q^{k-1} + q^{k-2}t + \ldots + qt^{k-2} + t^{k-1}.$

Both choices would be in contradiction to the previously shown conjectures!

Let W be a real reflection group acting on V. The contragredient action of W on $V^* = \text{Hom}(V, \mathbb{C})$ is given by

$$\omega(\rho) := \rho \circ \omega^{-1}.$$

This gives an action of W on the symmetric algebra $S(V^*) = \mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a **diagonal action** on

$$\mathbb{C}[\mathbf{x},\mathbf{y}] := \mathbb{C}[V \oplus V].$$

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\omega(f) = f$ for all $\omega \in W$,
- alternating if $\omega(f) = \det(\omega) f$ for all $\omega \in W$.

Alternating polynomials-Generalization

Let W be a complex reflection group acting on V. The contragredient action of W on $V^* = Hom(V, \mathbb{C})$ is given by

$$\omega(\rho) := \rho \circ \omega^{-1}.$$

This gives an action of W on the symmetric algebra $S(V^*) = \mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a **diagonal action** on

$$\mathbb{C}[\mathbf{x},\mathbf{y}] := \mathbb{C}[V \oplus V^*].$$

A polynomial $f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ is called

- invariant if $\omega(f) = f$ for all $\omega \in W$,
- alternating if $\omega(f) = \det(\omega) f$ for all $\omega \in W$.

The cyclic group $C_k = \langle \zeta \rangle$ would act on $\mathbb{C}[x, y] := \mathbb{C}[\mathbb{C} \oplus \mathbb{C}]$ by

$$\zeta(x^a y^b) = \zeta^a \cdot x^a \ \zeta^b \cdot y^b = \zeta^{a+b} \cdot x^a y^b.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The cyclic group $C_k = \langle \zeta \rangle$ acts on $\mathbb{C}[x, y] := \mathbb{C}[\mathbb{C} \oplus \mathbb{C}^*]$ by

$$\zeta(x^a y^b) = \zeta^a \cdot x^a \ \zeta^{-b} \cdot y^b = \zeta^{a-b} \cdot x^a y^b.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The cyclic group $C_k = \langle \zeta \rangle$ acts on $\mathbb{C}[x, y] := \mathbb{C}[\mathbb{C} \oplus \mathbb{C}^*]$ by

$$\zeta(x^a y^b) = \zeta^a \cdot x^a \ \zeta^{-b} \cdot y^b = \zeta^{a-b} \cdot x^a y^b.$$

This gives

$$\mathbb{C}[x,y]^{\mathcal{C}_k} = \operatorname{span} \left\{ x^a y^b : a \equiv b \mod k \right\},$$

$$\mathbb{C}[x, y]^{det} = \operatorname{span} \left\{ x^{a} y^{b} : a + 1 \equiv b \mod k \right\}$$
$$= x \mathbb{C}[x, y]^{\mathcal{C}_{k}} + y^{k-1} \mathbb{C}[x, y]^{\mathcal{C}_{k}},$$

$$\mathbb{C}[x, y]^{\det^{-1}} = \operatorname{span} \left\{ x^{a} y^{b} : a \equiv b + 1 \mod k \right\}$$
$$= x^{k-1} \mathbb{C}[x, y]^{\mathcal{C}_{k}} + y \mathbb{C}[x, y]^{\mathcal{C}_{k}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The cyclic group $C_k = \langle \zeta \rangle$ acts on $\mathbb{C}[x, y] := \mathbb{C}[\mathbb{C} \oplus \mathbb{C}^*]$ by

$$\zeta(x^a y^b) = \zeta^a \cdot x^a \ \zeta^{-b} \cdot y^b = \zeta^{a-b} \cdot x^a y^b.$$

$$\mathbb{C}[x,y]^{det} = x\mathbb{C}[x,y]^{\mathcal{C}_k} + y^{k-1}\mathbb{C}[x,y]^{\mathcal{C}_k},$$

$$\mathbb{C}[x,y]^{\mathsf{det}^{-1}} = x^{k-1}\mathbb{C}[x,y]^{\mathcal{C}_k} + y\mathbb{C}[x,y]^{\mathcal{C}_k}.$$

Now, we have (beside interchanging the roles of q and t) only the following choice:

$${\sf Cat}^{(1)}({\mathcal C}_k;q,t) \hspace{2mm} := \hspace{2mm} q+t^{k-1}.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

The cyclic group $C_k = \langle \zeta \rangle$ acts on $\mathbb{C}[x, y] := \mathbb{C}[\mathbb{C} \oplus \mathbb{C}^*]$ by

$$\zeta(x^a y^b) = \zeta^a \cdot x^a \ \zeta^{-b} \cdot y^b = \zeta^{a-b} \cdot x^a y^b.$$

Now, we have (beside interchanging the roles of x and y) only the following choice:

$$\operatorname{Cat}^{(1)}(\mathcal{C}_k; q, t) := q + t^{k-1}.$$

The q-power equals the number of reflecting hyperplanes N* = 1 and the t-power equal the number of reflections N = k - 1. We have

$$egin{array}{rcl} q^N \, {
m Cat}^{(1)}({\mathcal C}_k;q,q^{-1}) &=& q^{N^*} \, {
m Cat}^{(1)}({\mathcal C}_k;q^{-1},q) \ &=& 1+q^k=[2k]_q/[k]_q. \end{array}$$

Final conjecture

Conjecture

Let W be a well-generated complex reflection group. Then

$$egin{array}{rcl} q^{mN}\,{
m Cat}^{(m)}(W;q,q^{-1})&=&q^{mN^*}\,{
m Cat}^{(m)}(W;q^{-1},q)\ &=&\prod_{i=1}^\ellrac{[d_i+mh]_q}{[d_i]_q}, \end{array}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

where

- N is the number of reflections in W and where
- ► *N*^{*} is the number of reflecting hyperplanes.