qot - Fap - Codolarn aavmlenrss
b faihe v etin ot qroues

ChAvhai, daamp VoA

‘“s ’&\)m



Ouarvaw

Finite reflection groups

g, t-FuB-Catalan numbers for real reflection groups
Algebraic Combinatorics — the extended Shi arrangement
Combinatorial Algebra — rational Cherednik algebras

g, t-FuB-Catalan numbers for complex reflection groups
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Finite real reflection groups

Let V be a finite-dimensional real vector space.

» A (finite) real reflection group
W= (tr,....t;) C O(V)

is a finite group generated by reflections.




\rredlucbRe reolk refRechon groups

» The following list of root systems determine (up to
isomorphisms) the irreducible finite real reflection groups:

An—1

B

Dy,

h(k)

Hs, Ha, F4, Eg, E7, Eg

symmetric group),

group of signed permutations),

(
(
(group of even-signed permutations),
(dihedral group of order 2k) and

(

exceptional groups).



The most classical example of a reflection group is the symmetric
group S, of all permutations of n letters.

123 =(), 132=(23), 213 =(12),
231 = (123), 312=(132), 321 = (13).

This group can be seen as the reflection group of type A,_1:

transposition «——  reflection
00 = &=
simple transposition <~  simple reflection

(i,f+1) = € < €j+1-






Finite complex reflection groups
Let V be a finite-dimensional complex vector space

» A complex reflection s € U(V)

i. has finite order and
ii. its fixed-point space has codimension 1.

» A (finite) complex reflection group

W= (ts,...,t;) C O(V)
is a finite group generated by complex reflections.

Irreducible complex reflection groups are determined by the
following types:

G(m, p, )

with p|m of order m"n!/p,
Gy — Gz7

34 exceptional types.

(Shephard—Todd, Chevalley, 1950's)



Tle oacbl qrowp

44

» It acts on C by multiplication of a primitive root of unity (.
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» In real reflection groups, any reflection t has order two and
there is a 1 : 1-correspondence

{ reflections } <= { reflecting hyperplanes }
t — H,.

» In complex reflection groups, any reflection t has order
k > 2 and there is a correspondence

{ reflections } s { reflecting hyperplanes }

t 2.t o H.,.



ﬁw ?oﬁ-%wm_o.ls
For a permutation o € S,,, define a diagonal action on

(C[Xa)’] = C[Xl7y17 °co aXna.yn] by U(Xi) = Xo(i)s J(yi) = Yo(i)-
Eg.,

231(2x1X2y22y3) = 2X2X3y32y1.
A polynomial f € Cl[x,y] is called

» invariant if o(f) = f,

» alternating if o(f) = sgn(o) f.

Example

X1y2 + xoy1 is invariant, xjy» — xpy; is alternating.



ﬁw ?Q%WlS—Generalization

Let W be a real reflection group acting on V. The
contragredient action of W on V* = Hom(V/,C) is given by

w(p) = powL.

This gives an action of W on the symmetric algebra S(V*) = C[x]
and 'doubling up’ this action gives a diagonal action on
Clx,y] = C[V & V].

A polynomial f € C[x,y] is called
» invariant if w(f) = f,
» alternating if w(f) = det(w) f.
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g, t-FuB-Catalan numbers as a bigraded Hilbert series

Let W be a reflection group now acting on C[x,y] and let
A := ( alternating polynomials ) < C[x,y].

Define the W-module M(™) (W) to be minimal generating space
of the ideal A™,

M™(W) = A™/(x,y)A™ = CB,

where B is any homogeneous minimal generating set for A™.

M(™) (W) sits inside a larger W-module DR(™ (W) as its isotypic
component,
MM (W) = eger (DRI™(W)).



g, t-FuB-Catalan numbers as a bigraded Hilbert series

Definition
For any real reflection group W, define q, t-FuB-Catalan
numbers to be the bigraded Hilbert series of M(™ (W),

CatM(W;q,t) = H(M™(W);q,t)

= Z qdegx(f) tdegy(f)‘
feB

> Cat(’")(W; g, t) is a symmetric polynomial in g and t,

» it reduces in type A,_1 to the classical g, t-FuB-Catalan
numbers,

Cat(™ (S, g, t) = Cat!™(q, t)
introduced by Haiman in the 1990's.



Example: Cat(l)(Sg,; q,t)

For W = 83, one can show that

MO (S5) = C { Af@o).201 Ao Aion,an}H

where

Af(0,1),002)} A{(1,0),(0,1)}

1 1 1

A{(i17j1)7(i2)j2)}(x’y) = det X{ly'lil Xé.lyé'l Xélyél

is the generalized Vandermonde determinant. This gives

Cat(83; g, 1)

X]’:Zy']l:2 Xzizyéé X?I;zyéz

H(M(l)(83)' q, t)
3 2 2 3
qg° +q°t+qt° +t° + qt.

b



A conjectured formula for the dimension of M(™ (W)

Computations of the dimensions of M(™ (W) were the first
motivation for further investigations:

Conjecture

Let W be a real reflection group. Then

¢
CatM(W;1,1) = H

i=1

d; + mh
d

where
» / is the rank of W,
» h is the Coxeter number and

» di,...,d; are its degrees.
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» These numbers, called FuB-Catalan numbers, count several
combinatorial objects, e.g.,

> positive regions in the generalized Shi arrangement
(Athanasiadis, Postnikov),

» m-divisible non-crossing partitions (Armstrong, Bessis,
Reiner),

» facets in the generalized Cluster complex (Fomin, Reading,
Zelevinsky).

» They reduce for m = 1 to the well-known Catalan numbers
associated to real reflection groups:

An—l Bn Dn

=10 |G ) - COY)
Lk |[Hs | Hs | Fa | Bs | E | Es
k+2 | 32 | 280 | 105 | 833 | 4160 | 25080




The classical g, t-FuB-Catalan numbers

In type A, Cat(m)(S,,; g, t) occurred within the past 15 years in
various fields of mathematics:

» Hilbert series of space of diagonal coinvariants (Haiman),

» complicated rational function in the context of modified
Macdonald polynomials (Garsia, Haiman),

» Hilbert series of some cohomology module in the theory of
Hilbert schemes of points in the plane (Haiman),

» they have a conjectured combinatorial interpretation in terms
of two statistics on partitions fitting inside the partition
w:=_(n—1)m,...,2m, m),

Cat(m) q7 Z qarea()\) bounce(A )

ACu

» Proved for m = 1 (Garsia, Haglund) and for t = 1 (Haiman).
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The extended Shi arrangement

Let W be a crystallographic reflection group.

Shil™ (W) is defined to be the collection of (translates of the
reflecting) hyperplanes in V given by

{Hf a e ™, —m < k < m},

where HSX = {x € V : (x,a) = k}.

> A region of Shi(™ (W) is a connected component of its
complement.

Remark

Coxeter arrangement C extended Shi arrangement.



The extended Shi arrangement

Let W be a crystallographic reflection group.

Theorem (Yoshinaga)
The number of regions in Shil™ (W) is given by

(mh +1)*.

Theorem (Athanasiadis)

The number of positive regions in Shil™ (W) — regions which lie
in the fundamental chamber of the associated Coxeter
arrangement — is given by

d; + mh

di

i=1



Example: Shi)(A,) _
regions

HO

a3

HO

a2

0 1
Hal H i

({ regions }‘ — 16=(1-3+1)

(6}
(o)}

’{ positive regions }‘ = 5=

N
w



Example: Shi(l)(Ag) and Cat(l)(Ag; q)

1
Ha.,

0
Has

0 pl
Hs, Ha,

CatM(Ay; q) = quh =1+4+29+q*+ >



Specialization t = 1.

Conjecture
Let W be a crystallographic reflection group. Then

Cat(™ (W;q,1 quh

where the sum ranges over all regions of Shi{™(®) which lie in the
fundamental chamber of the associated Coxeter arrangement
and where coh denotes the coheight statistic.

» The conjecture is known to be true for type A,

» was validated by computations for several types.



Specialization t = ¢!

Conjecture
Let W be a reflection group. Then

d; h
Cat(m)(W; 9.9 1 _ —mNH[ +m ]q’
[di]q
where
» NN is the number of reflections in W,

> [n]g:=q" 1+ ...+ g+ 1is the usual g-analogue of n.



Tl olideadkral groups

Theorem
Let W be the dihedral group of type l(k). Then

m
Cat™(W;q,t) = qm 7" [ jk + g,
j=0

where

n—1 n—2 n—2 n—1

[Ngei=q" " +q" “t+...+qt" "+t

Theorem
All shown conjectures hold for the dihedral groups.
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Let W be a real reflection group. The rational Cherednik algebra
He = Ho(W)
is an associative algebra generated by
V,V* W,

subject to defining relations depending on a rational parameter
¢, such that

> the polynomial rings C[V], C[V*] and
» the group algebra CW

are subalgebras of H..



A simple H.-module

Forc=m+ % there exists a unique simple H.-module L which
carries a natural filtration.

Theorem (Berest, Etingof, Ginzburg)
Let W be a real reflection group. Then

H(gr(L):q) = g ™ [mh+1],

H(e(r(L)):q) = *'"NH[" [f,f;”]‘a

where gr(L) is the associated graded module of L and where
e(gr(L)) is its trivial component.



The connection between L and the space of generalized
diagonal coinvariants

Theorem
Let W be a real reflection group and let

DR™M(W) = A™~1/TA™1

be the generalized diagonal coinvariants graded by degree in x
minus degree in'y. Then there exists a natural surjection of
graded modules,

DR(™M(W) @ det — gr(L),

where det denotes the determinantal representation.

Remark
This theorem generalizes a theorem by Gordon, who proved the
m =1 case, following mainly his approach.



The connection between L and the space of generalized
diagonal coinvariants

Conjecture (Haiman)

The W-stable kernel of the surjection in the previous theorem does
not contain a copy of the trivial representation.

Corollary

If the previous conjecture holds, then
MM(W) = e(gr(L))

as graded modules. In particular,

Cat(W; q,q 1 — —mNH [d [—;ﬁ:h]q






Tle oacbl qrowp
The cyclic group Cx = (¢) would act on C[x, y] := C[C & C] by
C(xyb) = ¢ x? b yb = ¢atb. yayb.
This would give
Clx,y]% = span{x?y®:a+b=0 mod k},
C[x,y]%* = span {x"yb :a+b=1 mod k}

= xC[x, y]% + yC[x, y]*,

Clx,y]" = span {x*y*:a+b=k—1 mod k}

= Z Xiyj((:[x,y]ck.
i4+j—k—1



Tl oaeQ.CL qrowp

Clx,y]** = xC[x,y]% + yClx, y]*,
Cloyl® " = Y XyiClx, y|%.
i+j=k—1

We would have two possible choices to define g, t-Catalan numbers
for the cyclic group Cy:

CatM(Cr;q,t) = g+t or

CatD(Criq,t) = g +q" %t + . 4 qth 24tk

» Both choices would be in contradiction to the previously
shown conjectures!



ﬁw ?Q%Wls —Generalization

Let W be a real reflection group acting on V.
The contragredient action of W on V* = Hom(V,C) is given by

w(p) :=pow™L.

This gives an action of W on the symmetric algebra S(V*) = C[x]
and ‘doubling up’ this action gives a diagonal action on

C[x,y] :=C[V & V].

A polynomial f € C[x,y] is called
» invariant if w(f) = f for all w € W,
» alternating if w(f) = det(w) f for allw € W.



ﬁw ?Q%Wls —Generalization

Let W be a complex reflection group acting on V.
The contragredient action of W on V* = Hom(V, C) is given by

w(p) :=pow™L.

This gives an action of W on the symmetric algebra S(V*) = C[x]
and 'doubling up’ this action gives a diagonal action on

C[x,y] :=C[V & V7].

A polynomial f € C[x,y] is called
» invariant if w(f) = f for all w € W,
» alternating if w(f) = det(w) f for allw € W.



Tle oaeQ.CL qroup
The cyclic group Cx = (¢) would act on C[x, y] := C[C & C] by

C(Xayb) _ Ca . x? Cb . yb — Ca+b . Xayb'



Tle oaeQ.CL qroup
The cyclic group Cx = (¢) acts  on C|x, y] := C[C & C*] by

((Xayb) _ Ca . x? Cfb . yb _ Cafb . Xayb.



Tle oaeQ.CL qroup
The cyclic group Cx = (¢) acts  on C|x, y] := C[C & C*] by

((Xayb) _ Ca . x? Cfb . yb _ Cafb . Xayb.
This gives

(C[X,y]ck = span {xayb :a=b mod k},

Clx,y]** = span{x?y®:a+1=b mod k}

= xC[x,y]% + y* 'C[x, y]*,

(C[X,y]det_1 = span {Xayb ca=b+1 mod k}

= x"7IC[x, y]%* + yClx, y].



Tl oacbl qrowp
The cyclic group Cx = (() acts  on C[x,y] := C[C & C*] by
CxPyP) = (7o x? (b yb = @b xayb,
Clx,y]** = xClx, y]% + y*Clx, y]%,
Choyl*™ " = xClx,y]% + yClx, yI%.

Now, we have (beside interchanging the roles of g and t) only the
following choice:

Cat(l)(Ck;q,t) = g+ tkL



Tle oaeQ.CL qrowp
The cyclic group Cx = (() acts  on C[x,y] := C[C & C*] by
<(Xayb) _ Ca . x? Cfb . yb _ Cafb . Xayb.

Now, we have (beside interchanging the roles of x and y) only the
following choice:

Cat(l)(Ck;q,t) = g+ tk L

» The g-power equals the number of reflecting hyperplanes
N* =1 and the t-power equal the number of reflections
N =k — 1. We have

gV Cat(l)(Ck; q, q_l) = gV Cat(l)(Ck; g q)

= 1+ ¢*=[2K]q/[K],-



Conjecture
Let W be a well-generated complex reflection group. Then
g™ CatM(W; q,g7Y) = ¢™v Cat(m)(W' a'q)
[d lo

where
» NN is the number of reflections in W and where

» N* is the number of reflecting hyperplanes.



