
Math 3330 - Solution set for Assignment 1 - Fall 2011.

1. Let n ≥ 2, and G be a simple graph with n vertices. Prove that there are vertices v
and w of G such that deg(v) = deg(w).

Solution: Let G be a simple graph with n vertices. Then there are n possible values
for degrees of vertices of G, namely 0, 1, . . . , n− 1. Note that a vertex of degree n− 1
must be joined to every other vertex in G. Hence the degree values 0 and n−1 cannot
occur simultaneously in G. Thus there are n− 1 possible degree values for n vertices
of G, which by pigeonhole principle implies that there are vertices v and w of G such
that deg(v) = deg(w).

2. Without using the recursive method of Theorem 3 of Lecture 3 and the corollary
thereafter, determine whether the following sequences are graphic or not:

(i) ⟨4, 2, 2, 1, 0, 0⟩.
(ii) ⟨2, 2, 2, 2⟩.
(iii) ⟨4, 3, 2, 1, 0⟩.
(iv) ⟨4, 4, 4, 4, 3, 3, 3, 3⟩.
(v) ⟨3, 2, 2, 1, 0⟩.

Solution of Part (i): ⟨4, 2, 2, 1, 0, 0⟩ is not a graphic sequence, because the number
of odd terms in the sequence is odd. Recall that every graph has an even number of
vertices of odd degrees.

Solution of Part (ii): ⟨2, 2, 2, 2⟩ is graphic, because it is the degree sequence of the
cycle of length 4.

Solution of Part (iii): Using Problem 1, one can observe that ⟨4, 3, 2, 1, 0⟩ is not
graphic.

Solution of Part (iv): ⟨4, 4, 4, 4, 3, 3, 3, 3⟩ is graphic, because it is the degree se-
quence of the graph G defined as below.

VG = {v1, v2, v3, v4, v5, v6, v7, v8},
EG = {{v1, v5}, {v1, v6}, {v1, v7}, {v2, v6}, {v2, v7}, {v2, v8}, {v3, v7}

{v3, v8}, {v3, v5}, {v4, v8}, {v4, v5}, {v4, v6}, {v1, v2}, {v3, v4}}.

Solution of Part (v): ⟨3, 2, 2, 1, 0⟩ is graphic, because it is the degree sequence of
the graph G defined as below

VG = {v1, v2, v3, v4, v5},
EG = {{v1, v2}, {v1, v3}, {v1, v5}, {v2, v3}}.



3. Using the recursive method of Theorem 3 of Lecture 3 and the corollary thereafter,
determine whether the following sequences are graphic or not:

(i) ⟨7, 7, 6, 5, 4, 4, 3, 2⟩.
(ii) ⟨4, 4, 3, 3, 3, 3, 2, 2, 2⟩.
(iii) ⟨5, 5, 4, 3, 2, 2, 2, 1⟩.
(iv) ⟨5, 5, 4, 4, 2, 2, 1, 1⟩.

Solution of Part (i): Applying the recursive method of the above mentioned theo-
rem, we get

⟨7, 7, 6, 5, 4, 4, 3, 2⟩ → ⟨6, 5, 4, 3, 3, 2, 1⟩ → ⟨4, 3, 2, 2, 1, 0⟩ → ⟨2, 1, 1, 0, 0⟩ → ⟨0, 0, 0, 0⟩.

Clearly ⟨0, 0, 0, 0⟩ is a graphic sequence, hence ⟨7, 7, 6, 5, 4, 4, 3, 2⟩ is graphic too.

Solution of Part (ii): Applying the recursive method of the above mentioned the-
orem, we get

⟨4, 4, 3, 3, 3, 3, 2, 2, 2⟩ → ⟨3, 2, 2, 2, 3, 2, 2, 2⟩ → ⟨3, 3, 2, 2, 2, 2, 2, 2⟩ → ⟨2, 1, 1, 2, 2, 2, 2⟩
→ ⟨2, 2, 2, 2, 2, 1, 1⟩ → ⟨1, 1, 2, 2, 1, 1⟩ → ⟨2, 2, 1, 1, 1, 1⟩
→ ⟨1, 0, 1, 1, 1⟩ → ⟨1, 1, 1, 1, 0⟩ → ⟨0, 1, 1, 0⟩
→ ⟨1, 1, 0, 0⟩ → ⟨0, 0, 0⟩.

Clearly ⟨0, 0, 0⟩ is a graphic sequence, hence ⟨4, 4, 3, 3, 3, 3, 2, 2, 2⟩ is graphic too.

Solution of Part (iii): Applying the recursive method of the above mentioned
theorem, we get

⟨5, 5, 4, 3, 2, 2, 2, 1⟩ → ⟨4, 3, 2, 1, 1, 2, 1⟩ → ⟨4, 3, 2, 2, 1, 1, 1⟩ → ⟨2, 1, 1, 0, 1, 1⟩
→ ⟨2, 1, 1, 1, 1, 0⟩ → ⟨0, 0, 1, 1, 0⟩ → ⟨1, 1, 0, 0, 0⟩ → ⟨0, 0, 0, 0⟩.

Clearly ⟨0, 0, 0, 0⟩ is a graphic sequence, hence ⟨5, 5, 4, 3, 2, 2, 2, 1⟩ is graphic too.

Solution of Part (iv): Applying the recursive method of the above mentioned
theorem, we get

⟨5, 5, 4, 4, 2, 2, 1, 1⟩ → ⟨4, 3, 3, 1, 1, 1, 1⟩ → ⟨2, 2, 0, 0, 1, 1⟩ → ⟨2, 2, 1, 1, 0, 0⟩
→ ⟨1, 0, 1, 0, 0⟩ → ⟨1, 1, 0, 0, 0⟩ → ⟨0, 0, 0, 0⟩.

Clearly ⟨0, 0, 0, 0⟩ is a graphic sequence, hence ⟨5, 5, 4, 4, 2, 2, 1, 1⟩ is graphic too.
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4. For each of the following sequences list all the graphs that realize the sequence:

(i) ⟨10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1⟩.
(ii) ⟨2, 2, 2, 2, 2, 2, 2, 1, 1⟩.
(iii) ⟨4, 4, 4, 4, 4⟩.

Solution of Part (i): Only one graphG has he degree sequence ⟨10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1⟩,
because if we have a vertex v of degree 10 in a graph of 11 vertices, then v is adjacent
to every other vertex. The graph G is defined as

VG = {v0, v1, . . . , v10},
EG = {{v0, vi} : 1 ≤ i ≤ 10}.

Solution of Part (ii): One can use induction to show that the only connected graph
with the degree sequence ⟨2, 2, . . . , 2, 1, 1⟩ (with n 2’s) is the path of length n + 1.
Similarly the only connected graph with the degree sequence ⟨2, 2, . . . , 2⟩ (with n 2’s)
is the cycle of length n. Moreover, if ⟨2, 2, . . . , 2, 1, 1⟩ is the degree sequence of a graph,
both vertices of degree one appear in the same connected component. Hence the list
of all the graphs that realize ⟨2, 2, 2, 2, 2, 2, 2, 1, 1⟩ is

• P8,

• a graph with two connected components P5 and C3,

• a graph with two connected components P4 and C4,

• a graph with two connected components P3 and C5,

• a graph with two connected components P2 and C6,

• a graph with two connected components P1 and C7,

• a graph with three connected components P2, C3, and C3,

• a graph with three connected components P1, C3, and C4,

where for every positive integer n, Pn denotes a path of length n and Cn denotes a
cycle of length n.

Solution of Part (iii): The only graph that realizes ⟨4, 4, 4, 4, 4⟩ is the complete
graph on 5 vertices.

5. Prove or disprove: There exists a simple graph G with 13 vertices, 31 edges, three
vertices of degree one, and seven vertices of degree four.
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Solution: Suppose a graphG with the above description exists. Let VG = {v1, v2, . . . , v13}
be the vertex set of G, and assume that

deg(v1) = deg(v2) = deg(v3) = 1, and deg(v4) = . . . = deg(v10) = 4.

By the degree-sum theorem, we know that 3+4×7+deg(v11)+deg(v12)+deg(v13) =
2 × 31, hence deg(v11) + deg(v12) + deg(v13) = 31. Construct the new graph H by
removing v1, v2, v3, and the three edges that are incident on these vertices from G.
Let α1, α2, and α3 denote the degrees of v11, v12, and v13 in H. Clearly αi ≤ 9 for
every 1 ≤ i ≤ 3. Hence α1 + α2 + α3 ≤ 27. Note that

deg(v11) + deg(v12) + deg(v13) ≤ α1 + α2 + α3 + 3 ≤ 30,

since there are at most three edges from {v1, v2, v3} to {v11, v12, v13}. But this is a
contradiction, because deg(v11) + deg(v12) + deg(v13) = 31.
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