
Math 3330 - Assignment 2 - Fall 2011.

1. Provide a simple graph as an example for each of the following cases. Provide an
explanation in each case.

(i) A walk that is not a trail.

(ii) A trail that is not a path.

(iii) A closed trail that is not a cycle.

(iv) A nontrivial closed walk that does not contain any cycles.

Solution of Part (i): Let K5 be the complete graph on 5 vertices {v1, v2, v3, v4, v5}.
The walk ⟨v1, v2, v4, v1, v2, v3⟩ is not a trail.

Solution of Part (ii): Let K5 be the complete graph on 5 vertices {v1, v2, v3, v4, v5}.
The trail ⟨v1, v2, v4, v1, v3⟩ is not a path.

Solution of Part (iii): Let K5 be the complete graph on 5 vertices {v1, v2, v3, v4, v5}.
The closed trail ⟨v1, v2, v4, v1, v3, v5, v1⟩ is not a cycle.

Solution of Part (iv): Let K5 be the complete graph on 5 vertices {v1, v2, v3, v4, v5}.
The closed walk ⟨v1, v2, v4, v2, v1⟩ does not contain any cycle.

2. Let k ≥ 1 be an integer. Let G be a simple graph whose vertices all have degree at
least k. Prove that

(i) G contains a path of length k.

(ii) If k ≥ 2 then G contains a cycle of length at least k.

Solution or Part (1): Consider a path of maximum length inG, say P = ⟨v1, v2, . . . , vl⟩.

Claim: The vertex v1 cannot be adjacent to any vertex in VG \ {v1, . . . , vl}.
Proof of claim: Suppose not, i.e. suppose that there exists a vertex w ∈ VG \
{v1, . . . , vl} such that v1 is adjacent to w. Then the walk P ′ = ⟨w, v1, . . . , vl⟩ is a
path in G with length more than P . But this is a contradiction, since P is a path of
maximum length in G.

Hence v1 can be adjacent only to {v2, . . . , vl}, which means that deg(v1) ≤ l − 1. On
the other hand, we know that v1 has degree at least k. Thus k ≤ l − 1 = length(P),
which implies that P has length at least k.

Solution or Part (2): Consider a path of maximum length inG, say P = ⟨v1, v2, . . . , vl⟩.
By (i) we know that l ≥ k + 1. As we explained above, the vertex v1 cannot be adja-
cent to any vertex in VG \ {v1, . . . , vl}. Hence v1 has to be adjacent to at least k − 1
vertices in {v3, v4, . . . , vl}, since the degree of v1 is at least k. Therefore there is at
least an index k ≤ i ≤ l such that vi is adjacent to v1. The walk ⟨v1, . . . , vi, v1⟩ is a
cycle of length i ≥ k.



3. Let n ≥ 3 be an integer. We define the complete bipartite graph Kn,n on the vertex
set

VKn,n = {v1, . . . , vn} ∪ {u1, . . . , un},

where X = {v1, . . . , vn} and Y = {u1, . . . , un} form a bipartite partition for Kn,n.
Moreover, for every 1 ≤ i, j ≤ n, vi is adjacent to uj . Let x and y be two different
nonadjacent vertices in Kn,n.

(i) Find the number of all the paths from x to y of length 2.

(ii) Find the number of all the paths from x to y of length 3.

(iii) Find the number of all the paths from x to y of length 4.

(iv) In general, for every positive integer k, find the number of paths from x to y in
Kn,n of length k.

Solution: Since x and y are two different nonadjacent vertices in Kn,n, they both
should belong either to X or to Y . Without loss of generality assume that x, y ∈ X

Solution of Part (i): Any path of length 2 from x to y is of the form ⟨x, ui, y⟩.
Since they are n choices for ui, the number of such paths is n.

Solution of Part (ii): A path starting from x of length 3 is of the form ⟨x, ui, vj , uk⟩.
Thus every path of length 3 starting at x will end in Y . Therefore the number of paths
of length 3 from x to y is zero.

Solution of Part (iii): Any path of length 4 from x to y is of the form ⟨x, ui, vj , ui′ , y⟩,
where vj ∈ X \ {x, y} and i ̸= i′. Since every vertex in X is adjacent to every vertex
in Y , they are n choices for ui, n− 2 choices for vj , and n− 1 choices for vi′ . Hence
the number of such paths is n(n− 2)(n− 1).

Solution of Part (iv): Let k be a positive integer. If k is odd, then the number of
paths of length k from x to y is zero (as we explained in Part (ii)). Suppose k is even.
Repeating the argument in (iii), we can see that the number of paths from x to y of
length k is
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4. Let P and Q be paths of maximum length in a connected simple graph G. Prove that
P and Q have a common vertex.

Solution: Let P = ⟨p1, . . . , pn⟩ and Q = ⟨q1, . . . , qn⟩ be paths of maximum length.
Suppose not, i.e. suppose that P and Q do not have a common vertex. Since G is
connected, there is a path between every pair of vertices in G. For every 1 ≤ i, j ≤ n,
let Ri,j denote a shortest path from pi to qj . Let Ri0,j0 denote the path with the
shortest length among {Ri,j}1≤i,j≤n. Since P and Q have no common vertices, Ri0,j0
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has length at least 1.

Claim: Ri0,j0 and P do not have a common vertex except pi0 . Similarly, Ri0,j0 and
Q do not have a common vertex except qj0 .
Proof of claim: We prove the claim for P . The statement for Q can be proved
similarly. Towards a contradiction, suppose Ri0,j0 and P have a vertex other than
pi0 in common. Let pk be the last vertex on Ri0,j0 that is in common with P . Then
the subwalk of Ri0,j0 from pk to qj0 has a shortest length than Ri0,j0 . But this is a
contradiction with the choice of Ri0,j0 . Hence Ri0,j0 and P do not have a common
vertex except pi0 .

Let Ri0,j0 = ⟨pi0 , v1, . . . , vt, qj0⟩. Consider the following paths in each of the following
cases:

• If i0, j0 ≤ n
2 , consider the path ⟨pn, pn−1, . . . , pi0 , v1, . . . , vt, qj0 , . . . , qn⟩.

• If i0 ≤ n
2 and j0 >

n
2 , consider the path ⟨pn, pn−1, . . . , pi0 , v1, . . . , vt, qj0 , qj0−1, . . . , q1⟩.

• If i0 >
n
2 and j0 ≤ n

2 , consider the path ⟨p1, p2, . . . , pi0 , v1, . . . , vt, qj0 , . . . , qn⟩.
• If i0 >

n
2 and j0 >

n
2 , consider the path ⟨p1, p2, . . . , pi0 , v1, . . . , vt, qj0 , qj0−1, . . . , q1⟩.

Observe that in each of the above cases, we have a path of length more than P (or
Q), since Ri0,j0 is nontrivial. But this is a contradiction. So P and Q have a common
vertex.

5. Prove that every closed walk W of odd length in a simple graph contains a cycle.
Hint: First show that if W does not contain any cycles then there exists an edge in
W which repeats immediately.

Solution: We first prove the following claim:

Claim: If a closed walk W does not contain any cycles then there exists an edge in
W which repeats immediately.
Proof of claim: Suppose not, i.e. there is no edge which repeats immediately.
Consider all the nontrivial closed subwalks of W , and let W0 be one with the minimum
length. Since no edge in W repeats immediately, the length of W0 is at least 3. It is
easy to show that W0 is a trail (because if an edge is repeated in W0, we can find a
shorter closed subwalk of W0). Now by a theorem in the notes, any nontrivial closed
trail contains a cycle. This implies that W contains a cycle, which is a contradiction.

Towards a contradiction, assume that W = ⟨v1, . . . , vn, v1⟩ is a closed walk of odd
length in a simple graph, and it does not contain a cycle. By the above claim, there
is an edge e with endpoints vi and vi+1 that repeats immediately, i.e. ⟨vi, vi+1, vi⟩ is a
subwalk of W (i.e. vi+2 = vi). Consider the new walk W ′ = ⟨v1, . . . , vi, vi+3 . . . , vn, v1⟩
constructed by removing the repeated edge fromW . ClearlyW ′ is a closed walk of odd
length, and it does not contain any cycles (sinceW does not contain any cycles.) Hence
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we can repeat the above procedure, i.e. find an edge that is repeated immediately, and
remove it. Repeating the above procedure, we finally get to a closed walk of length 3,
which is clearly contained in W . It is easy to see that the only closed walk of length 3
in a simple graph is a triangle. But this is a contradiction, because we assumed that
W does not contain any cycles.
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