Math 3330 - Assignment 2 - Fall 2011.

1. Provide a simple graph as an example for each of the following cases. Provide an
explanation in each case.

(i) A walk that is not a trail.
(ii) A trail that is not a path.
(iii) A closed trail that is not a cycle.
(iv) A nontrivial closed walk that does not contain any cycles.
Solution of Part (i): Let K5 be the complete graph on 5 vertices {vy, va, v3, v4, U5 }.
The walk (v1,v2,v4,v1,v2,v3) is not a trail.

Solution of Part (ii): Let K5 be the complete graph on 5 vertices {vy, va,vs, v4, v5}.
The trail (vq, ve,v4,v1,v3) is N0t a path.

Solution of Part (iii): Let K5 be the complete graph on 5 vertices {v1,v2, v, v4, U5 }.
The closed trail (v, vg,v4,v1,v3,v5,v1) is not a cycle.

Solution of Part (iv): Let K5 be the complete graph on 5 vertices {vy, va, v3, v4, U5 }.
The closed walk (v1,v9,v4,v2,v1) does not contain any cycle.

2. Let k£ > 1 be an integer. Let G be a simple graph whose vertices all have degree at
least k. Prove that

(i) G contains a path of length k.
(ii) If £ > 2 then G contains a cycle of length at least k.

Solution or Part (1): Consider a path of maximum length in G, say P = (v, va,...,v;).
Claim: The vertex v; cannot be adjacent to any vertex in Vg \ {v1,...,v}.

Proof of claim: Suppose not, i.e. suppose that there exists a vertex w € Vi \
{v1,...,v} such that vy is adjacent to w. Then the walk P = (w,v1,...,v;) is a

path in G with length more than P. But this is a contradiction, since P is a path of
maximum length in G.

Hence v; can be adjacent only to {va, ..., v}, which means that deg(vi) <1 —1. On
the other hand, we know that v; has degree at least k. Thus k <[ — 1 = length(P),
which implies that P has length at least k.

Solution or Part (2): Consider a path of maximum length in G, say P = (v1,va,...,v;).
By (i) we know that [ > k4 1. As we explained above, the vertex v; cannot be adja-
cent to any vertex in Vi \ {v1,...,v;}. Hence vy has to be adjacent to at least k — 1
vertices in {vs, vy, ..., v}, since the degree of v; is at least k. Therefore there is at
least an index k < i < [ such that v; is adjacent to v;. The walk (vi,...,v;,v1) is a
cycle of length 7 > k.



3. Let n > 3 be an integer. We define the complete bipartite graph K, , on the vertex
set
Vi, = v, o Ufug, . up b,

where X = {v1,...,v,} and Y = {uq,...,u,} form a bipartite partition for K, .
Moreover, for every 1 < ¢,7 < n, v; is adjacent to u;. Let z and y be two different
nonadjacent vertices in K, .
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Find the number of all the paths from x to y of length 2.
Find the number of all the paths from = to y of length 3.
Find the number of all the paths from z to y of length 4.
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In general, for every positive integer k, find the number of paths from x to ¥ in
K, 5 of length k.
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Solution: Since z and y are two different nonadjacent vertices in K, ,, they both
should belong either to X or to Y. Without loss of generality assume that z,y € X

Solution of Part (i): Any path of length 2 from z to y is of the form (z,u;,y).
Since they are n choices for u;, the number of such paths is n.

Solution of Part (ii): A path starting from z of length 3 is of the form (z, u;, v;, ug).
Thus every path of length 3 starting at « will end in Y. Therefore the number of paths
of length 3 from x to y is zero.

Solution of Part (iii): Any path of length 4 from x to y is of the form (z, u;, v;, uir, y),
where v; € X \ {z,y} and ¢ # /. Since every vertex in X is adjacent to every vertex
in Y, they are n choices for u;, n — 2 choices for vj, and n — 1 choices for v;. Hence
the number of such paths is n(n — 2)(n — 1).

Solution of Part (iv): Let k be a positive integer. If k is odd, then the number of
paths of length & from x to y is zero (as we explained in Part (ii)). Suppose k is even.
Repeating the argument in (iii), we can see that the number of paths from z to y of
length k is
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n(n—2)][(n—1)(n—=3)]... [(n—g)(n—g—l-Q)](n—g-i-l) = (n—g-l-l) (n—i)(n—i—2).
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4. Let P and @ be paths of maximum length in a connected simple graph G. Prove that
P and @ have a common vertex.

Solution: Let P = (p1,...,p,) and Q = {(q1,...,¢n) be paths of maximum length.
Suppose not, i.e. suppose that P and ) do not have a common vertex. Since G is
connected, there is a path between every pair of vertices in G. For every 1 < 1,5 < n,
let R;; denote a shortest path from p; to ¢;. Let R;, ;, denote the path with the
shortest length among {R; j}i<i j<n. Since P and @ have no common vertices, R;, j,



has length at least 1.

Claim: R;, j, and P do not have a common vertex except p;,. Similarly, R;, ;, and
() do not have a common vertex except gj,.

Proof of claim: We prove the claim for P. The statement for () can be proved
similarly. Towards a contradiction, suppose R;, j, and P have a vertex other than
Di, in common. Let p; be the last vertex on R;, j, that is in common with P. Then
the subwalk of R;, j, from p; to gj, has a shortest length than R;, ;,. But this is a

contradiction with the choice of R;, j,. Hence R;, j, and P do not have a common

vertex except pj,.
Let Ri, j, = (PigsV1,- - -V, qj,). Consider the following paths in each of the following
cases:

If ig, jo < %, consider the path (pn, Pn—1,...,Pigs V15 -+ 0Vt,Qjgs - - -+ qn)-

e Ifig < § and jo > 5, consider the path (pn, pn—1,...,Dig, V1, -+, Vt; Qjo» Gio—15 - - - » q1)-
e If i9 > § and jo < 5, consider the path (p1,p2,...,Dig, V1,V oy -+ -5 qn)-

e Ifig > § and jo > %, consider the path (p1,p2,...,Dig, V1, ..., V¢, Qo Gjo—15 - - - 5 q1)-

Observe that in each of the above cases, we have a path of length more than P (or
Q), since R;, j, is nontrivial. But this is a contradiction. So P and @) have a common
vertex.

. Prove that every closed walk W of odd length in a simple graph contains a cycle.
Hint: First show that if W does not contain any cycles then there exists an edge in
W which repeats immediately.

Solution: We first prove the following claim:

Claim: If a closed walk W does not contain any cycles then there exists an edge in
W which repeats immediately.

Proof of claim: Suppose not, i.e. there is no edge which repeats immediately.
Consider all the nontrivial closed subwalks of W, and let Wy be one with the minimum
length. Since no edge in W repeats immediately, the length of Wy is at least 3. It is
easy to show that W is a trail (because if an edge is repeated in Wy, we can find a
shorter closed subwalk of Wj). Now by a theorem in the notes, any nontrivial closed
trail contains a cycle. This implies that W contains a cycle, which is a contradiction.

Towards a contradiction, assume that W = (vy,...,v,,v1) is a closed walk of odd
length in a simple graph, and it does not contain a cycle. By the above claim, there
is an edge e with endpoints v; and v;11 that repeats immediately, i.e. (v, vit1,v;) is a
subwalk of W (i.e. v;12 = v;). Consider the new walk W/ = (vy,...,0;, 043 ..., 0n,v1)
constructed by removing the repeated edge from W. Clearly W’ is a closed walk of odd
length, and it does not contain any cycles (since W does not contain any cycles.) Hence



we can repeat the above procedure, i.e. find an edge that is repeated immediately, and
remove it. Repeating the above procedure, we finally get to a closed walk of length 3,
which is clearly contained in W. It is easy to see that the only closed walk of length 3

in a simple graph is a triangle. But this is a contradiction, because we assumed that
W does not contain any cycles.



