
Math 3330 - Solutions of Assignment 6 - Fall 2011.

1. In each case, either prove the statement or disprove it by providing a counterexample.

(i) Subdividing an edge e in a graph G causes the edge-chromatic number to increase
by at most 1.

(ii) Subdividing an edge e in a graphG causes the edge-chromatic number to decrease
by at most 1.

Solution of Part (i): The statement is false. For a counter example, let G be a
cycle of length 3. Clearly, χ′(G) = 3, but subdividing any edge in G will create a
4-cycle which has edge-chromatic number 2.

Solution of Part (ii): The statement is false. For a counter example, let G be a
single edge. Clearly, χ′(G) = 1, but subdividing the edge in G will create a path of
length 2 which has edge-chromatic number 2.

2. In each of the following cases, determine if the graph is planar or not. If the graph is
planar, draw its embedding with no edge-crossings. If not, provide a proof.

(i) Peterson graph.

(ii) K3,3 − e, where e is any edge in the complete bipartite graph K3,3.

(iii) K8 −K3,3, where K8 is a complete graph on 8 vertices.

(iv) K6,6−C12, where k6,6 is a complete bipartite graph with partitions of size 6, and
C12 is a cycle of length 12.

Solution of part (i): Not planar. A detailed explanation is provided in a separate
file.

Solution of Part (ii): Planar. A detailed explanation is provided in a separate file.

Solution of Part (iii): Not planar. A detailed explanation is provided in a separate
file.

Solution of Part (iv): Not planar. A detailed explanation is provided in a separate
file.

3. Let G be a minimal non-planar graph, i.e. G is non-planar, but every subgraph of G
is planar.



(i) Prove that G is connected.

(ii) Prove that G does not have any cut-vertices.

Solution of Part (i): Suppose not, i.e. suppose that G is not connected. Let G1,
G2, . . . , Gm be the connected components of G. Since G is minimal, each Gi is planar.
Thus G is planar as well. But this is a contradiction.

Solution of Part (ii): Suppose G has a cut vertex v. Then G− v has at least two
components G1 and G2. The graphs G1 + v and G2 + v are planar.

First note that G1 + v has a planar drawing (i.e. drawing on the plane with no
edge-crossing) with v on its most outer face. To observe this, it is enough to embed
(without any edge-crossings) G1 + v on the surface of a sphere. Then, consider a face
with v on its border, and consider the stereographic projection of the sphere onto
the plane through any point inside that face (Understanding this part of the proof is
optional).

Thus G is planar, because we can embed the planar drawing of G1+v obtained above
inside a “face” of a planar drawing of G2 + v that has v on its boundary, and merge
the vertex v of G1 + v and G2 + v to get a planar drawing of G.

4. Prove that every planar graph decomposes into two bipartite graphs.

Solution: Let G be a planar graph. By the four-color theorem, there exists a proper
coloring f : VG → {1, 2, 3, 4} of vertices of G. For each 1 ≤ i ≤ 4, define,

Ui := {v ∈ VG : f(v) = i}.

Clearly, each Ui forms an independent set of G. Now define the bipartite subgraphs
G1 and G2 of G as

VG1 = V1 ∪ V2, V1 = U1 ∪ U2 and V2 = U3 ∪ U4,

EG1 = {xy ∈ EG : x ∈ V1 and y ∈ V2},
VG2 = W1 ∪W2, W1 = U1 ∪ U3 and W2 = U2 ∪ U4,

EG2 = {xy ∈ EG : x ∈ U1 and y ∈ U2} ∪ {xy ∈ EG : x ∈ U3 and y ∈ U4}.

It is not hard to see that G1 and G2 are bipartite subgraphs of G which decompose
G (check!).

5. Give an explicit edge-coloring to prove that χ′(Kr,s) = δmax(Kr,s).

Solution: Without loss of generality, assume that r ≤ s. Let U1 = {v1, . . . , vs}
and U2 = {u1, . . . ur} be the bipartite partition of Kr,s. Note that deg(ui) = s and
deg(vj) = r. Consider the coloring

f : EG → {1, . . . , s}, f(viuj) = i+ j (mod s).
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Note that for each ui, all edges adjacent to ui are colored differently, because i+ j1 ̸=
i + j2 (mod s) if 1 ≤ j1 ̸= j2 ≤ s. Similarly, all edges adjacent to vj are colored
differently for each j. Hence f is a proper edge coloring of G.

6. Prove that for any tree T we have χ′(T ) = δmax(T ).

Solution: We prove by induction on the number of vertices of T .
Basis of induction: This is true for any tree on 2 or 3 vertices.
Induction hypothesis: Suppose that for every tree T on n ≥ 4 vertices, χ′(T ) =
δmax(T ).
Induction step: Let T be a tree on n+1 vertices. Let v be a leaf of T . Then T − v
is a tree on n vertices. Thus by induction hypothesis, χ′(T − v) = δmax(T − v). Since
δmax(T − v) ≤ δmax(T ), there exists a proper edge-coloring of T − v with δmax(T )
colors. The tree T has one vertex v and one edge e more than T − v. Clearly e
has at most δmax(T ) − 1 neighbors. Thus we can extend the above coloring to an
edge-coloring of T with δmax(T ) colors.
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