Math 3330 - Solutions of Assignment 6 - Fall 2011.

1. In each case, either prove the statement or disprove it by providing a counterexample.

(i) Subdividing an edge e in a graph G causes the edge-chromatic number to increase
by at most 1.

(ii) Subdividing an edge e in a graph G causes the edge-chromatic number to decrease
by at most 1.

Solution of Part (i): The statement is false. For a counter example, let G be a
cycle of length 3. Clearly, x'(G) = 3, but subdividing any edge in G will create a
4-cycle which has edge-chromatic number 2.

Solution of Part (ii): The statement is false. For a counter example, let G be a
single edge. Clearly, ¥/(G) = 1, but subdividing the edge in G will create a path of
length 2 which has edge-chromatic number 2.

2. In each of the following cases, determine if the graph is planar or not. If the graph is
planar, draw its embedding with no edge-crossings. If not, provide a proof.

(i) Peterson graph.
(ii) K33 — e, where e is any edge in the complete bipartite graph K3 3.
(iii) Kg — K33, where Ky is a complete graph on 8 vertices.

)

(iv) Kg— Ch2, where kg g is a complete bipartite graph with partitions of size 6, and
C13 is a cycle of length 12.

Solution of part (i): Not planar. A detailed explanation is provided in a separate
file.

Solution of Part (ii): Planar. A detailed explanation is provided in a separate file.

Solution of Part (iii): Not planar. A detailed explanation is provided in a separate
file.

Solution of Part (iv): Not planar. A detailed explanation is provided in a separate
file.

3. Let G be a minimal non-planar graph, i.e. G is non-planar, but every subgraph of G
is planar.



(i) Prove that G is connected.

(ii) Prove that G does not have any cut-vertices.

Solution of Part (i): Suppose not, i.e. suppose that G is not connected. Let Gy,
Go, ..., Gy, be the connected components of G. Since GG is minimal, each G; is planar.
Thus G is planar as well. But this is a contradiction.

Solution of Part (ii): Suppose G has a cut vertex v. Then G — v has at least two
components G7 and Ga. The graphs G; + v and G5 + v are planar.

First note that G7 + v has a planar drawing (i.e. drawing on the plane with no
edge-crossing) with v on its most outer face. To observe this, it is enough to embed
(without any edge-crossings) G1 + v on the surface of a sphere. Then, consider a face
with v on its border, and consider the stereographic projection of the sphere onto
the plane through any point inside that face (Understanding this part of the proof is
optional).

Thus G is planar, because we can embed the planar drawing of G + v obtained above
inside a “face” of a planar drawing of G2 + v that has v on its boundary, and merge
the vertex v of G1 + v and G2 + v to get a planar drawing of G.

. Prove that every planar graph decomposes into two bipartite graphs.

Solution: Let G be a planar graph. By the four-color theorem, there exists a proper
coloring f : Vo — {1,2,3,4} of vertices of G. For each 1 < i < 4, define,

Up={veVg: flv)=1i}.

Clearly, each U; forms an independent set of G. Now define the bipartite subgraphs
G1 and G5 of GG as

VG1 = VMUV, Vi =U;UUy and Vo, =UsUUy,

Eg, = {zy€ Eg:xz € Vi andy € s},
Vo, = WiuWy, Wy =U;UU3 and Wy = Us U Uy,
Eq, = {ayeEg:xzecUandy e Us} U{ay € Eg:x € Us and y € Uy}.

It is not hard to see that G; and Gy are bipartite subgraphs of G which decompose
G (check!).
. Give an explicit edge-coloring to prove that x'(K;s) = dmax(Krs)-

Solution: Without loss of generality, assume that » < s. Let Uy = {v1,...,vs}
and Uy = {u1,...u,} be the bipartite partition of K, ;. Note that deg(u;) = s and
deg(v;) = r. Consider the coloring

f:Eq—A{Ll,...,s}, f(vu;) =i+ 7 (mod s).



Note that for each u;, all edges adjacent to u; are colored differently, because i + j; #
i+ j2 (mod s) if 1 < j; # jo < s. Similarly, all edges adjacent to v; are colored
differently for each j. Hence f is a proper edge coloring of G.

. Prove that for any tree T" we have x'(T') = dpmax(T)-

Solution: We prove by induction on the number of vertices of T'.

Basis of induction: This is true for any tree on 2 or 3 vertices.

Induction hypothesis: Suppose that for every tree T on n > 4 vertices, x'(T') =
5max(T)'

Induction step: Let T be a tree on n + 1 vertices. Let v be a leaf of T. Then T — v
is a tree on n vertices. Thus by induction hypothesis, x'(T' — v) = dmax(T — v). Since
Omax(T — v) < dmax(T), there exists a proper edge-coloring of T' — v with Opax(7T)
colors. The tree T has one vertex v and one edge e more than T — v. Clearly e
has at most dyax(7) — 1 neighbors. Thus we can extend the above coloring to an
edge-coloring of T" with dpmax(7") colors.



