
Math 3330 - Practice problems - Fall 2011.

The practice session is moved to 3:30 pm on Thursday.

1. Let G be the graph whose vertex set is the set of k-tuples with elements in
{0, 1}, with x adjacent to y if x and y differ in exactly two positions. Determine
the number of components of G.

2. Let G be a connected simple graph not having P4 (path on 4 vertices) or C3

(cycle on three vertices) as an induced subgraph. Prove that G is a complete
bipartite graph.

3. Let G denote the complement of G. Prove that χ(G) + χ(G) ≤ |V (G)|+ 1.

4. Prove that every k − 1-regular k-critical graph is a complete graph or an odd
cycle.

5. Let S be a set of size n. Define a graph G with vertex set S × S such that a
vertex u = (x1, y1) is adjacent to v = (x2, y2) if and only if x1 ̸= x2 and y1 ̸= y2.
Determine χ(G) and χ(G).

6. Let G be a graph on n vertices v1, . . . , vn, such that vi is adjacent to vj iff
|i− j| ≤ 3. Is G planar or not?



Solution set

1. We need to show that G has two connected components G1 and G2:

G1 = {v : the number of zeros in v is even},
G2 = {v : the number of zeros in v is odd}.

Complete the proof!

2. First we will show that G has no odd cycles. Suppose not, i.e. suppose that
G has an odd cycle. Let Ck = ⟨v1, v2, . . . , vk⟩ be the smallest odd cycle in
G. Clearly k > 4, since G has no C3. Now, we claim that Ck is an induced
subgraph of G. Because if not, there exists 1 ≤ i < j ≤ k with (i, j) ̸= (1, n)
and |i − j| > 1, such that vi is adjacent to vj in G. Then ⟨vi, . . . , vj⟩ and
⟨vj+1, . . . , vk, v1, . . . , vi⟩ are both cycles in G, and one of them has to be odd.
But this is a contradiction, since Ck is the smallest cycle of odd length. This
implies that ⟨v1, v2, v3, v4⟩ is an induced subgraph of G, which is a contradiction.
Thus, G has no odd cycle, and it is a bipartite graph.

Let U1 and U2 be a bipartite partition for G. Let v ∈ U1 and w ∈ U2. We
claim that v is adjacent to w. Suppose not, i.e. suppose that v and w are
not adjacent. Consider the shortest path v, v1, v2, . . . , vm, w from v to w. This
path has length at least 4. Moreover, it is induced, otherwise there exists a
shorter path from v to w. Thus G has P4 as an induced subgraph, which is a
contradiction. Hence, G forms a complete bipartite graph.

3. We prove by induction.
Induction hypothesis: First note that the condition holds for any graph on
3 vertices (check!).
Induction hypothesis: Assume that for k > 3, and any graph G on k vertices,
we have χ(G) + χ(G) ≤ k + 1.
Induction step: Let G be a graph on k+1 vertices. Let v be a vertex in G. By
induction hypothesis, χ(G− v) + χ(G− v) ≤ k + 1. Note that G− v = G− v.
Now consider each of the following cases:
Case 1: If χ(G) = χ(G−v), then χ(G)+χ(G) ≤ χ(G−v)+χ(G−v)+1 ≤ k+2,
and we are done.
Case 2: If χ(G) = χ(G−v), then χ(G)+χ(G) ≤ χ(G−v)+1+χ(G−v) ≤ k+2,
and we are done.
Case 3: Assume that χ(G) = χ(G − v) + 1 and χ(G) = χ(G − v) + 1. This
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implies that degG(v) ≥ χ(G−v), otherwise we could have extended the χ(G−v)-
coloring of G− v to G properly. Similarly, degG(v) ≥ χ(G− v). Thus

χ(G− v) + χ(G− v) ≤ degG(v) + degG(v) = k.

But this implies that χ(G)+χ(G) ≤ χ(G− v)+1+χ(G− v)+1 ≤ k+2. Note
that in the above argument, we have used the result that deletion of a vertex
of G decreases the chromatic number of G by at most 1.

4. Brook’s Theorem! You need to make an argument regarding connectedness of
G.

5. First note that the largest independent set in G has size n (why?). Thus χ(G) ≥
|V (G)|
α(G)

= n2

n
. Let S = {s1, . . . , sn}. It is easy to see that f : VG → {1, . . . , n},

f((si, sj)) = i is a proper coloring of G (why?). Thus χ(G) = n. Also note
that u = (si, sj) is adjacent to v = (s′i, s

′
j) in G if and only if si = s′i or

sj = s′j. Thus ω(G) ≥ n, as the subgraph of G induced on {(s1, si) : 1 ≤ i ≤ n}
forms a clique. So its chromatic number is at least n. Moreover, the coloring
g : VG → {0, . . . , n− 1}, g((si, sj)) = i+ j( mod n) forms a proper coloring of
G (why?), hence χ(G) = n.

6. Planar!
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