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Hessian Calculation for Phylogenetic
Likelihood based on the Pruning Algorithm

and its Applications
Toby Kenney and Hong Gu

Abstract
We analytically derive the first and second derivatives of the likelihood in maximum

likelihood methods for phylogeny. These results enable the Newton-Raphson method to be used
for maximising likelihood, which is important because there is a need for faster methods for
optimisation of parameters in maximum likelihood methods. Furthermore, the calculation of the
Hessian matrix also opens up possibilities for standard likelihood theory to be applied, for inference
in phylogeny and for model selection problems. Another application of the Hessian matrix is local
influence analysis, which can be used for detecting a number of biologically interesting phenomena.
The pruning algorithm has been used to speed up computation of likelihoods for a tree. We explain
how it can be used to speed up the computation for the first and second derivatives of the likelihood
with respect to branch lengths and other parameters. The results in this paper apply not only to
bifurcating trees, but also to general multifurcating trees. We demonstrate the use of our Hessian
calculation for the three applications listed above, and compare with existing methods for those
applications.
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1 Introduction
Maximum likelihood methods for phylogeny are becoming more popular, as com-
puters become more powerful, allowing larger data sets and more complicated mod-
els to be used for phylogenetic inference. Finding the maximum likelihood estimate
(MLE) is a numerical optimisation problem. The most popular method for this type
of numerical optimisation is the Newton-Raphson method. However, the Newton-
Raphson method requires the first and second derivatives of the objective function
(in this case, the likelihood). It is therefore necessary to be able to calculate these
derivatives, or to numerically approximate them. Numerically approximating the
first derivatives is common practice in the currently existing Newton-based algo-
rithms in phylogenetic analysis. The basic idea is to approximate the tangent of the
curve by using a chord. As the length of the chord gets shorter, its slope will tend to
the derivative. By choosing a sufficiently short chord, a good approximation of the
first derivative can be obtained. In principal the derivative of the derivative can be
approximated using the same method. However numerically approximating second
derivatives in this naive way usually would not provide the accuracy and stability
needed, because it involves taking the difference of two function values that are
very close, which greatly increases rounding errors. This is particularly true when
the first derivative is nearly zero. It also does not have any advantage in compu-
tational complexity over the analytical calculation provided here, since it requires
calculating the likelihood at O((b + p)2) points, where b is the number of branches
of the tree and p is the number of all other parameters. An alternative is to use more
sophisticated quasi-Newton methods, which build up an approximation to the Hes-
sian matrix during the optimisation process. These methods are used in a number
of phylogeny software packages, such as PAML, NHML and PAUP*. However,
it is widely acknowledged that the lack of “an efficient and accurate algorithm for
optimising the parameters” is a “major difficulty with likelihood based inference”
(Bryant, Galtier and Poursat, 2005). We hope that the Hessian calculation presented
in this paper will help to remedy this situation.

Besides being useful in the Newton-Raphson optimisation method, the second
derivative or Hessian matrix is fundamentally important in statistical theory for in-
ference. The Fisher information matrix is important for a number of aspects of
statistical inference, such as the Cramér-Rao bound for the variance of an unbiased
estimator, and for the score test in hypothesis testing (see e.g. Bickel and Dok-
sum, 2001). In particular, based on the likelihood theory, under certain regularity
conditions the maximum likelihood estimate is asymptotically normally distributed
around its true value when the sample size tends to infinity, with the asymptotic
variance given by the inverse of the Fisher information matrix (also see Bickel and
Doksum, 2001). In practice, the Fisher information matrix often cannot be calcu-
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lated, and the most convenient estimator of it is the sample average of the outer
product of the scores (the first order derivative) or the negative Hessian matrix of
the likelihood function evaluated at the maximum likelihood estimate. The negative
Hessian is also called the observed information. The estimator based on the scores
is usually easier to calculate but less efficient compared to the variance estimator
based on Hessian matrix (Porter, 2002). Efron and Hinkley (1978) also showed that
the observed information can sometimes even be preferable to the Fisher informa-
tion in real data analysis.

Statistical models represent our assumptions about the approximate mechanism
with which the data are generated. Following the specified model and estimation of
the parameters in themodel, it is always important and interesting to explorewhether
the analysis results are sensitive to the model and/or data. With the Hessian matrix
available, the local influence method proposed by Cook (1986) can be applied in the
sensitivity analysis of any model parameters for a fixed tree topology. Sensitivity
analysis to data perturbation reveals outliers to the specified model.

The first derivatives of likelihood with respect to branch lengths or parameters
affecting the rate matrix are known (Schadt, Sinsheimer and Lange, 1998, Schadt
and Lange, 2002). Furthermore, second derivatives with respect to a single branch
length are easy, and have been used at least as early asKishino,Miyata andHasegawa
(1990). The second derivatives with respect to two different branch lengths are also
known—Bryant, Galtier and Poursat (2005) mention a modification of the pruning
algorithm to compute the gradient and Hessian with respect to branch lengths, but
do not give a reference, and this modification does not appear to be widely known.
However, despite the importance of the second derivatives, second derivatives in-
volving model parameters are not calculated for the likelihoods arising from phy-
logeny. In this article, we develop a method for calculating second derivatives with
respect to parameters that affect the rate matrix, and also branch lengths. The results
in this paper apply not only to bifurcating trees, but also to general multifurcating
trees.

We will first present the analytical results for the derivatives of phylogenetic
likelihood and use an example throughout to illustrate how to calculate the deriva-
tives through a tree traversal algorithm in Section 2. We then outline the algorithm
and complexity of the algorithm in Section 3. This section provides the details that
allow a programmer to implement the results. Then in Section 4, we present three
different applications of the Hessian matrix. First we provide a comparison of the
computation speeds using the Newton-Raphson method both for our exact Hessian
calculation and for the approximation using the scores, with PAML (Yang, 2007),
which uses quasi-Newton methods, on six real data sets with a variety of numbers
of taxa and sequence lengths. We then provide a comparison of the confidence
intervals built using likelihood theory with those obtained using a non-parametric
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bootstrap on simulated data. Finally, we apply local influence analysis, which is
computed using the Hessian matrix, to the problem of detecting sites under positive
selection in codon models. Finally some concluding remarks and discussion are
given.

2 Theory
There are two essential components in our methods of calculating the derivatives
of phylogenetic likelihood. The first is the analytical solution of the first and sec-
ond derivatives of the transition matrix with respect to any parameter which influ-
ences it, through which the derivatives of likelihood on each branch are calculated.
The second component is a tree traversal algorithm which efficiently transforms the
derivatives calculated on each branch into derivatives of the whole tree likelihood
function. This algorithm is based on the pruning algorithm, which is an efficient
way to compute the likelihood for a given phylogeny (Felsenstein, 1973, 1981).

The data we are analysing consists of aligned DNA sequences — one sequence
for each taxon in the tree. We can arrange the data as a matrix, where the rows are
sequences, and the columns are sites. Thus, a site is one position in the (nucleotide,
amino acid or codon) alignment. Under the assumption that the evolutionary pro-
cess at each site is independent or conditionally independent given the parameters
in the substitution model, the likelihood for a given tree is the product of the site
likelihoods. Therefore, the derivatives can be worked out using the product rule,
so the problem reduces to calculating the derivatives at each site. If we are consid-
ering the log-likelihood instead, then the derivative is the sum of the derivatives at
each site. Of course, we can convert between the derivative of likelihood and the
derivative of log likelihood easily — if l = log(L) then ∂l

∂β
= 1

L
∂L
∂β
. For likelihoods

in phylogeny, it is usually easiest to deal with the likelihoods for each site, and then
convert to log likelihoods so that they can be added for different sites. Thus we will
focus our discussion on the derivatives at one site.

For each branch length parameter which only affects one branch, calculating the
derivative for each site is easy. For the other parameters, which affect every branch,
we start by considering the heterotachy case, where the parameter takes a different
value on each branch. We will refer to the value of a parameter β on a specific
branch e as a branch parameter, and denote it βe. In particular, the branch length
of e is denoted as te. From the derivatives with respect to the branch parameters,
we will be able to calculate the derivatives for the homotachy case, where β is a
Q-matrix parameter. More precisely, the homotachy case can be viewed as a special
case of the heterotachy model, where the parameter is constrained to have the same
value on all branches, i.e. βe = βe′ for each pair of edges e and e′. This means

3

Kenney and Gu: Hessian Calculation in Phylogeny and its Applications

Published by De Gruyter, 2012

Brought to you by | Dalhousie University
Authenticated | 129.173.118.191
Download Date | 1/11/13 8:47 PM



that the derivative is obtained via the chain rule as the sum of the derivatives with
respect to all the branch parameters, i.e

∂L
∂β

=
∑

e

∂L
∂βe

∂2L
∂β∂γ

=
∑

e

∑
e′

∂2L
∂βe∂γe′

where β and γ may mean the same parameter or two different parameters and e and
e′ may be the same or different branches. The calculations of the above derivatives
rely on the first and second derivatives of the transition matrix P on the edges e or
e′ with respect to any parameter which influences it.

We will first outline the model assumptions used in our methods and give some
brief discussion about their importance. We then present the theoretical solution to
differentiating the P matrix. To better present the tree traversal algorithm, we begin
with a recap of the pruning algorithm followed by an illustrative example. Then we
describe the solutions for the first and second derivatives in the following sections,
with the same example being used to illustrate the calculation. Finally we end the
Theory section with the extension of our methods to mixed models.

2.1 Model Assumptions
Most likelihood based phylogenetic models assume the evolutionary processes are
Markov processes with the evolutionary relationships represented by trees. The
models that implement the general time-reversible (GTR)model (Lanave et al, 1984)
further assume that the sequences have evolved under globally stationary, reversible,
and homogeneous conditions. Detailed definitions of these assumptions can be
found in Jayaswal et al. (2005) and Ababneh et al. (2006), some scenarios that
relax these global assumptions are also discussed in Jayaswal et al (2010). The
global homogeneity mentioned in these papers mainly refers to time-homogeneity
of the process, which is called homotachy below.

The methods developed here are under the assumptions that sites evolve inde-
pendently and each site evolves under the GTR model assumptions. However some
assumptions are more crucial and others are easily relaxed. We will list the assump-
tions made for our method, with some discussion of which assumptions are merely
for convenience and can easily be relaxed, and which assumptions are more funda-
mental.

The general assumption about the models in our method is that the evolutionary
process along each branch is a continuous-time homogeneous Markov chain. That
is, for a given site, and a given branch of the tree, the transition probability is given
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by P(t) = eQt, where Q is the instantaneous rate matrix, and is scaled so that the
average rate of substitution at equilibrium equals 1. Thus the tree branch length t
represents the expected number of substitutions per site. Note that the branch length
t is not necessarily a linear transformation of the time. If the overall rate of change
is not constant in time but the relative rate of different changes are constant, a non-
linear scaling of time can be applied so that changes in the overall evolutionary rate
along a branch are negated.

Among other assumptions made, many are purely for convenience of calculation
and to increase the efficiency of computation, in which cases the methods could
easily be extended to weaker versions of these conditions.

• Sites evolve independently.

Our method calculates the derivatives of the likelihood of a given site. In order
to extend this to obtain the overall likelihood of the data, we need to have a method
of obtaining the overall likelihood from the likelihood at each site. Independence
allows us to calculate the overall log-likelihood as the sum of the log-likelihoods
at each site. We could relax this condition to the assumption that sites evolve inde-
pendently conditional on certain parameters, which might have certain correlations.
(Examples of such models are hidden Markov models, see Yang (1995) and Felsen-
stein and Churchill (1996).)

• Different branches of the tree evolve independently.

This assumption is important for similar reasons to the previous assumption,
and as in the previous assumption, it would be possible to extend the methods de-
scribed in this paper to deal with the cases where there is some dependence between
parameters on different branches but conditional independence of the evolution on
different branches holds (e.g. some covarion models).

• Stationarity.

This is convenient because it allows us reroot the tree and therefore reduce the
total calculation by reusing the same calculations. (Assuming a relaxed form of
reversibility — see Reversibility for more details).

• Reversibility.

This is important for two reasons. Firstly, it guarantees that the Q-matrix is
diagonalisable over the real numbers, and allows us to use special methods for di-
agonalising the Q-matrix, which do not apply to general matrices. Without this as-
sumption, calculating eQt and its derivatives becomes more complicated. Secondly,
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it means that we do not need to worry about the directions of branches, which sim-
plifies the process of rerooting the tree. If we are careful about the directions of each
branch, we can still reroot the tree without the reversibility assumption, but station-
arity might be violated if the largest left and right eigenvectors of the Q-matrix are
not equal.

• Homotachy.

This refers to the assumption that the rates of substitution are the same across all
lineages for a given site. Since our method is based upon a model where the param-
eters are different on different branches, it trivially extends to deal with heterotachy
(provided other assumptions are not violated).

2.2 Differentiating the P Matrix
In order to calculate any of the derivatives, we need to be able to differentiate the
P-matrix with respect to the parameters. With respect to the branch length, this is
easy. Recall P = eQt, so ∂P

dt = QeQt and ∂2P
dt2 = Q2eQt. However, differentiat-

ing with respect to other parameters is more difficult, because matrix multiplication
doesn’t commute. This is of course a well-known problem, and there are a number
of algorithms for computing the derivative of a matrix exponential with respect to
parameters which affect the matrix. The method we use was applied to linear dif-
ferential equations by Jennrich and Bright (1976), and to continuous time Markov
processes by Kalbfleisch and Lawless (1985). However, they elected to use a quasi-
Newton method, rather than calculate the second derivative of log-likelihood with
respect to the parameters. We did not find calculations of second derivatives in the
literature. Thus we will provide the results in the following theorem and give a
detailed derivation in Appendix 1.

Theorem 1. Suppose parameters β and γ are two parameters which influence the
Q matrix, and the following derivatives are readily available: ∂Q

∂β
= Mβ, ∂Q

∂γ
= Mγ

and ∂2Q
∂β∂γ

= Mβγ. Then we have:

1. If the process is reversible, then for any parameter values, Q is diagonalisable
as Q = ADA−1.

2. For any invertible constant matrix C, we define X = C−1QC, so that Q =
CXC−1, and we have that

∂P
∂β

=
∂

∂β

(
eQt

)
= C

∂(eXt)

∂β
C−1,
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and we define Nβ =
∂X
∂β

= C−1MβC. Now, for a given set of parameter values
θ0, if Q(θ0) is diagonalizable as Q(θ0) = ADA−1, then by choosing C = A in
the above expression, X(θ0) is equal to the diagonal matrix D with entries di,
and the i jth entry of the matrix ∂(eXt)

∂β

∣∣∣∣
θ0
is given by

 ∂(eXt)

∂β

∣∣∣∣∣∣
θ0


i j

=

 (Nβ)i j(edit−ed jt)

di−d j
if di , d j

(Nβ)i jtedit if di = d j

Note that the above result for di = d j is also the limit of the fractional form
for di , d j, when d j → di, as can be seen e.g. by using L’Hopîtal’s rule.

3. Furthermore, denoting Nγ = A−1MγA and Nβγ = A−1MβγA, the second
derivative of the transition matrix Pwith respect to parameters β and γ (which
could be the same parameter) can be written as

∂2P
∂β∂γ

∣∣∣∣∣∣
θ0

= A
∂2(eXt)

∂β∂γ

∣∣∣∣∣∣
θ0

A−1,

where the i jth entry of matrix ∂2(eXt)

∂β∂γ

∣∣∣∣
θ0
is given by the following, with appro-

priate limiting values taken in the cases when di = d j, di = dk, or d j = dk: ∂2(eXt)

∂β∂γ

∣∣∣∣∣∣
θ0


i j

=
(Nβγ)i j(edit − ed jt)

di − d j
+

∑
k

((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j) hi jk

where hi jk =
edit

(di−d j)(di−dk)
+ ed jt

(d j−di)(d j−dk)
+ edkt

(dk−d j)(dk−di)
.

2.3 Recap of Pruning Algorithm
The pruning algorithm, introduced in Felsenstein (1973) and applied more effi-
ciently to unrooted trees in Felsenstein (1981), is a method for efficiently computing
the likelihood of the data for one site, given a fixed tree with a root selected and in-
stantaneous substitution matrix Q. The transition matrix for a branch of length t is
therefore given by P(t) = eQt. The basic idea of the pruning algorithm is that for
a subtree, the only information that affects the overall likelihood is the list of con-
ditional likelihoods, conditional on the value at the root of the subtree. Once this
observation is made, the lists of conditional likelihoods can be built up starting with
the leaves, until the root is reached, at which point the likelihood can be directly
computed.

We will denote the likelihood list of the subtree below node N, conditional on
the value at N, as a vector dN and call it the Down1 list at N. If N is not the root
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W = “A” X = “G” Y = “A” Z = “C”

Figure 1: Example Tree. Numbers on branches are branch lengths (expected number
of substitutions per site).

of the tree, and the node directly above N is M with an edge e between N and
M, then δN = eQtedN will be called the Down2 list at N. For convenience we use
# to denote the elementwise product of two vectors of the same length. The list
dN can be recursively formed as dN = δN1

#δN2
# · · · #δNk , where N1, . . . ,Nk are the

immediate descendants of node N along branches of lengths t1, . . . , tk respectively,
and δNi = eQtidNi .

2.3.1 Illustrative Example: Pruning Algorithm

We illustrate the pruning algorithm by working through an example tree (Figure 1).
To simplify the example we use nucleotide data, but the samemethod can be applied
to amino acid or codon data. We will later use the same tree to demonstrate our
algorithm for calculating the derivatives.
Suppose that the Q matrix is such that for branch length equal to 1,

P(1) = eQ =

A C G T
0.3 0.2 0.4 0.1
0.2 0.1 0.4 0.3
0.4 0.4 0.1 0.1
0.1 0.3 0.1 0.5


A
C
G
T

This allows us to calculate the cases for branch length equal to 2, 3 and 4 respec-
tively:

P(2) = e2Q =


0.30 0.27 0.25 0.18
0.27 0.30 0.19 0.24
0.25 0.19 0.34 0.22
0.18 0.24 0.22 0.36
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R
dR=(0.0041223, 0.0037407, 0.0043514, 0.0035369)

2

rrrrrrrrrrrrr
3

LLLLLLLLLLLLL

U
dU=(0.07527, 0.04838, 0.10504, 0.02446)

1

rrrrrrrrrrrrr

4

V
dV=(0.07074, 0.0723, 0.05149, 0.05424)

3

rrrrrrrrrrrrr

2

W
dW=(1, 0, 0, 0)

X
dX=(0, 0, 1, 0)

Y
dY=(1, 0, 0, 0)

Z
dZ=(0, 1, 0, 0)

Figure 2: Likelihood Lists for Example Tree

P(3) = e3Q =


0.262 0.241 0.271 0.226
0.241 0.232 0.271 0.256
0.271 0.271 0.232 0.226
0.226 0.256 0.226 0.292


P(4) = e4Q =


0.2578 0.2527 0.2509 0.2386
0.2527 0.2566 0.2419 0.2488
0.2509 0.2419 0.2626 0.2446
0.2386 0.2488 0.2446 0.2680


For nucleotide data, the likelihood list dN at node N is a 4-dimensional vec-

tor. We give our lists in alphabetical order, so the first element is the likelihood
conditional on the nucleotide at that node being “A”, denoted as dN,A, etc. Thus
dN = (dN,A, dN,C, dN,G, dN,T). We start by forming the likelihood lists at the leaf
nodes, W, X, Y and Z. Since we know what the nucleotide is at the leaf nodes, the
likelihoods in the list are all either 1 or 0 — 1 for the nucleotide at that node, and 0
otherwise, so for example dW = (1, 0, 0, 0), because the nucleotide at W is “A”.

Next we want to form the likelihood lists at the parent nodes of leaf nodes, which
in this case are dU and dV . To form the list dU , we see that the likelihood of the
subtree below U, conditional on the nucleotide at U, is given by the product of the
two conditional likelihoods δW and δX. For example, conditional on the nucleotide
at U being “A”, the likelihood of “A” at W is (eQ)11, which is 0.3. Similarly the
conditional likelihood of “G” at X is (e4Q)13, which is 0.2509. Therefore, the overall
likelihood of the tree below U, conditional on the nucleotide at U being “A” is 0.3×
0.2509 = 0.07527. We can use this method to calculate the conditional likelihood
lists at U and V , dU and dV , and then form δU = e2QdU and δV = e3QdV . The
conditional likelihood list at R is dR = δU#δV . This gives the likelihood lists in
Figure 2.
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From the top likelihood list, we can read off the overall likelihood by summing
the nucleotide frequencies (which we will henceforth refer to as π) multiplied by
the corresponding conditional likelihoods. That is, the overall likelihood is given
by

∑4
i=1 dR,iπi = πT dR, where (_)T denotes transposition. In this example, the nu-

cleotide frequencies are all 1
4
, (the vector of these frequencies must be the eigenvec-

tor of eQ with eigenvalue 1) thus, the overall likelihood is 0.0039378.

2.4 First Derivatives
Our method for calculating the first derivatives with respect to a parameter on a
given branch is the same as Schadt et al (1998), but we will see in later sections that
when we are computing the second derivatives as well, we can calculate the first
derivatives more efficiently.

Suppose we want to calculate the derivative of the site likelihood with respect
to a parameter β on some branch e of the tree, of length te. Denote the root of the
tree by R, we then have

∂L
∂βe

=
∂

∂βe

(
πT dR

)
= πT ∂dR

∂βe

The likelihood list dR was computed recursively using the pruning algorithm, thus
we can calculate its derivative by applying the following formulae recursively. For
any node N with the nodes N1, . . . ,Nk immediately below it (k = 0 if N is a leaf
node, k = 2 if N is not a leaf node and the tree is bifurcating), we use the formulae

∂dN

∂βe
=


δN1

# · · · #∂δN j

∂βe
# · · · #δNk if e is somewhere belowN j or

e is the edge between N and N j

0 if e is not below N

∂δN j

∂βe
=

 ∂eQte

∂βe
dN j if e is the edge between N and N j

eQte
∂dN j

∂βe
if e is somewhere belowN j

To explain the first formula, Recall that dN = δN1
# . . . #δNk . Therefore, by the

product rule, we have that ∂dN
∂βe

=
∑k

j=1 δN1
# · · · #∂δN j

∂βe
# · · · #δNk . However, if e is

not below N j, or between N j and N, then δN j does not depend on βe, so
∂δN j

∂βe
= 0.

Therefore at most one term in the sum is non-zero.
In effect, this is just the same calculation as computing the likelihood using the

pruning algorithm, except that on the branch e, the matrix eQte has been replaced by
its derivative.
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Recall that for a time-reversible model, the tree can be rerooted before apply-
ing the pruning algorithm. This is also true for our derivative calculation. For the
derivative ∂L

∂βe
, it will often be convenient to reroot the tree at the top node of e. Sup-

pose the bottom node of e is N and the top node of e is M, the likelihood can be
rewritten as dT

N(e
Qte)TΠuN , where Π is a diagonal matrix whose diagonal entries are

π, and uN , called the Up1 list at N, is the likelihood list conditional on the values
at M for the tree obtained by cutting the branch e, and rerooting at M. The list uN

can be obtained as a # product of Down2 lists for all the nodes below M in the new
subtree, or equivalently, it is the Down1 list dM when we reroot the original tree at
N. Thus we now have ∂L

∂βe
= dT

N(
∂eQte

∂βe
)TΠuN .

By properly rerooting the tree, we can reuse the likelihood lists and speed up
computation of the first and second derivatives. A full description of all the lists
necessary is given in Section 3.

2.4.1 Illustrative Example: First Derivatives

In the example above, we had calculated the likelihood lists dU , dV and dR. Suppose
we want to calculate the derivative of the likelihood with respect to a parameter β on
the branch RU. Note that the site likelihood is given by πT (δU#δV), or equivalently
(dU)

T (e2Q)TΠδV . Thus the derivative of the site likelihood with respect to β on RU

is (dU)
T
(
∂e2Q

∂βRU

)T
ΠδV .

For a different branch, for example WU, we can reroot the tree so that U be-
comes the root. Now we can write the likelihood as L = (dw)

T (eQ)TΠuW . Thus
the derivative of the site likelihood with respect to β on WU can be written as
(dW)

T
(
∂eQ

∂βWU

)T
ΠuW .

2.5 Second Derivatives
The second derivative of the likelihood is calculated as

∑
e
∑

e′
∂2L

∂βe∂γe′
for all pairs of

branches e and e′. We divide this sum into two cases:

1. e = e′: terms arising from taking the second derivative of the likelihood with
respect to branch parameters on the same branch,

∑
e

∂2L
∂βe∂γe

.

In this case, the calculation is similar to calculating a first derivative, except that
instead of replacing the P-matrix by its first derivative, we replace it by its second
derivative.

2. e , e′: terms arising from taking the second derivative of the likelihood with
respect to branch parameters on different branches,

∑
e,e′

∂2L
∂βe∂γe′

.
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Wewill always reroot the tree so that one of the following two situations applies:

• The root is at one end, denoted M, of edge e′, and the other edge e is below
e′. The relative position of e and e′ is denoted e < e′. Suppose the other end
of e′ is node N. Then the likelihood can be written as L = (dN)

T (eQte′ )TΠuN .
The second derivative is given by ∂2L

∂βe∂γe′
=

(
∂dN
∂βe

)T (
∂eQte′

∂γe′

)T
ΠuN .

• The root is at a node N between e and e′. The relative position of e and
e′ is now denoted as e//e′. Let the direct descendants of the node N be
N1, . . . ,Nk, then the likelihood is L = πT (δN1

#δN2
# · · · #δNk). Suppose e is

below N1, or is the edge between N and N1 (henceforth, we denote this sit-
uation e 6 N1) and similarly e′ 6 N2. Then the derivative is ∂2L

∂βe∂γe′
=

πT
((
∂δN1
∂βe

)
#
(
∂δN2
∂γe′

)
# · · · #δNk

)
.

Obviously for these terms, differentiating the likelihood requires us to differen-
tiate the lists δN and dN for various nodes N. Since these differentiated lists need to
be calculated recursively, we want to choose the root which will minimise the num-
ber of lists we need to compute. How to achieve the best efficiency in calculating
these terms will be given in Section 3.

2.5.1 Illustrative Example: Calculating the Second Derivatives for Parame-
ters on Different Branches

We demonstrate how to calculate the second derivatives with respect to parameters
on two different branches for each of the cases e < e′ and e//e′.

• e = UW, e′ = RU: this is the case e < e′. The likelihood of the tree, when
rooted at R, is given by L = dT

U(e
2Q)TΠuU . Therefore, we get ∂2L

∂βUW∂γRU
=(

∂dU
∂βUW

)T (
∂e2Q

∂γRU

)T
ΠuU , where ∂dU

∂βUW
=

(
∂eQ

∂βUW
dW

)
#δX.

• e = UW, e′ = RV: this is the case e//e′. Again we root the tree at R,
and the likelihood can be expressed as L = πT (δU#δV). Now we see that

∂2L
∂βUW∂γRV

= πT
((

∂δU
∂βUW

)
#
(
∂δV
∂γRV

))
. We can calculate the derivatives of the two

lists recursively: ∂δU
∂βUW

= e2Q ∂dU
∂βUW

and ∂δV
∂γRV

= ∂e3Q

∂γRV
dV .

2.6 Mixed Models
In phylogenetic analysis, rates-across-sites variation (and across lineages) is now
common practice. Since our calculations are derived from amodel with heterotachy,
they can easily be extended to allow rate variation acros lineages. We now extend
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our calculations to deal with cases where some parameters can be assumed to have
a random effect across sites, i.e. their values at a given site follow a probability
distribution. A particularly important example is the nonsynonymous/synonymous
ratio in the codon models (Goldman and Yang, 1994). Yang (1994), Nielsen &Yang
(1998), Yang, Nielsen, Goldman & Pedersen (2000) propose a number of different
models for how this parameter should be allowed to vary among sites. These models
are frequently used to detect positive selection. Our methods here can also be used
to calculate the derivatives with respect to parameters in those models, and therefore
make it possible to implement Newton-Raphson methods to maximise likelihood or
perform inference based on likelihood theory, for their models.

Assuming a vector β of parameters which affect the Q matrix has random effects
across sites, the likelihood for a given site is now given by∫

LβP(β)dβ

where Lβ is the likelihood given the values of β and P(β) is the probability density
function of β. For simplicity, and to make the computation feasible, we will consider
a discrete model for P(β), where there are a finite number of possible values for β,
which we denote β1, β2, . . . , βk, with probabilities p1, p2, . . . , pk respectively. This
approximation is common practice. The likelihood for a given site can now be
written as

L =
k∑

i=1

piLi

where Li is the likelihood when β = βi. Now it is easy to see that the derivative
with respect to βi is just pi

∂Li
∂βi
, and the derivative of the log likelihood is pi

Li

∂Li
∂βi
. Sec-

ond derivatives can also be worked out easily. For derivatives with respect to the
probabilities pi, it is easy to see that ∂L

∂pi
= Li.

However since the pi are constrained to sum to 1, we need to find a suitable
parametrisation of these probabilities. One way to parametrise a set of probabilities
is to set values φi =

pi
pk
for i < k. This means that pk = 1

1+
∑k−1

i=1 φi
, and pi = φi pk.

Now to find the derivatives of likelihood with respect to φi, we merely need to find
the derivatives with respect to the pi, and use the formulae ∂pk

∂φ j
= −pk

2, and

∂pi

∂φ j
=

{
pk − pi pk if i = j
−pi pk otherwise

We can use the product rule to calculate second derivatives. Using these, we can
work out the full Hessian matrix with respect to all the parameters. In terms of com-
putation, we have to calculate the Hessian for each possible parameter value in the
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mixture, so the complexity is proportional to the number of categories in the distri-
bution P(β). We will therefore want to keep this number fairly small. When P(β) is
a continuous distribution, it is usually possible to choose a discrete approximation
so that the number of different parameter values is small, but the accuracy of the
approximation is still sufficient for the purposes.

3 Implementation
In this section we extend the theory to obtain an efficient implementation that could
be used to write a program for calculating the first and second derivatives of like-
lihood. We begin by describing full sets of lists that are necessary for the efficient
implementation, followed by two sections that deal with the computational issues
in differentiating the P matrix twice. We then present the full algorithm in detail.
Then in Section 3.5, we analyse the time complexity of the algorithm, and show
that it is sufficiently efficient to be used in practice for computing first and second
derivatives of likelihood.

3.1 Different Types of Lists
The calculation of second derivatives as described above is very slow. Many of
the calculations involved are repeated multiple times. In this section, we describe
how to better organise the computations, in order to reduce the amount of needless
repetition.

There are two main sources of repeated computation. Firstly, when we calculate
the derivative of likelihood with respect to a branch parameter βe (which could be
branch length), we have obtained the derivative of the P matrix in the form AXA−1,
for some matrix X (see Theorem 1). Therefore, we are computing the derivative as
∂L
∂βe

= dT
N(AXA−1)TΠuN = uT

NΠAXA−1dN . The most efficient way to calculate this is
(uN

TΠA)X(A−1dN), so by saving the results for uN
TΠA and A−1dN and reusing them

to avoid repeatedly calculating them for every branch parameter, we can reduce the
computation time.

Secondly, for Q-matrix parameters β and γ, we calculate the derivative ∂2L
∂β∂γ

as
the sum

∑
e,e′

∂2L
∂βe∂γe′

, where the exact form of the summands depends on the relative
positions of e and e′ in the tree. When the root is at a node N between e and e′,
for example, the summand is given by ∂2L

∂βe∂γe′
= πT

((
∂δN1
∂βe

)
#
(
∂δN2
∂γe′

)
# · · · #δNk

)
, where

N1, . . . ,Nk are the immediate descendants of N and e 6 N1, e′ 6 N2. If we collect
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similar terms into the following sum and factorise it as:∑
e6N1
e′6N2

πT

((
∂δN1

∂βe

)
#
(
∂δN2

∂γe′

)
# · · · #δNk

)
= πT


∑

e6N1

∂δN1

∂βe

 #
 ∑

e′6N2

∂δN2

∂γe′

 # · · · #δNk


we can massively reduce the computation by computing the lists such as γβN1

=∑
e6N1

∂δN1
∂βe

.
We now provide a summary of all kinds of lists that need to be compiled, along

with their definitions at a node N for a rooted tree. The recursive formulae for
calculating these lists can easily be obtained from the basic lists dN , δN and uN . The
recursive formulae are presented explicitly in Section 3.4. For convenience, we
denote the node immediately above N (the parent of N) as M if N is not the root of
the tree.

Down1 This is the basic list dN that we used in the pruning algorithm. The values
are the conditional likelihoods of the tree below node N. We will also be
interested in the derivatives of this list with respect to a particular branch-
length parameter. We will use the notation dte

N = ∂dN
∂te
.

Down2 This is the list δN in the Theory section. It is the list of conditional likeli-
hoods at the parent, M, of N, for the tree consisting of M, N, and all nodes
below N. It is given by δN = eQtdN . Again, we denote δte

N = ∂δN
∂te

for a branch
e.

Down3 This is the list given as sN = A−1dN .

Schadt, Sinsheimer and Lange (1998) refer to the list δN as either RM or LM,
where M is the parent of N, and R or L is used to indicate that N is reached from
the right or left branch of M respectively. For multifurcating trees, this notation
cannot be easily applied, so we prefer to associate this list to the lower node. This
means that the number of lists that we associate with each node is fixed, thereby
simplifying the process of coding the algorithm.

Up1 This is the list uN that we used for calculating the first derivatives. If we let M
be the parent of N, then the list uN is the Down1 list, for the tree obtained by
rerooting at N, at the node M. We also want to calculate the list ute

N = ∂uN
∂te

for
all edges e that are below M after we reroot the tree at N.

Note that for our example tree, the root has only two branches, thus we have
δU = uV . If the root had more branches, then uV would include δU and other extra
branches.
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Up2 This list, denoted as vN , bears a similar relation to the list uN to the relation
that δN bears to dN . It corresponds to the conditional likelihoods of the sub-
tree obtained by removing all nodes below N. It is given by vN = eQtuN =
Π−1(eQt)TΠuN . We also want to calculate the list vte

N = ∂vN
∂te

for all edges e not
below N (e > N).

Up3 This is the list given as wN = ATΠuN . We also want to calculate the list
wte

N = ∂wN
∂te

= ATΠute
N for all edges e > N.

For example, the list vU for the example tree corresponds to the subtree
R

2

��
��

��
�

3

??
??

??
?

U V
3

2

??
??

??
?

Y Z
conditional on the nucleotide at U.

Cumulative1 This is the cumulative list cβN =
∑

e<N
∂(dN)

∂βe
=

∂(dN)

∂β
, where the sum is

taken over all branches below N in the tree.

Cumulative2 As we noted above, the lists δN are useful for making a more effi-
cient computation. We therefore want a similar sort of cumulative list, γβN =∑

e6N
∂(δN)

∂βe
=

∂(δN)

∂β
, where the sum is taken over all branches below N in the

tree, and also the branch directly above N.

A summary of all the above defined lists and their notations is given in Table 1.

Table 1: Lists and their notations

list Down1 Up1 Down2 Up2 Down3 Up3 Cumu-1 Cumu-2
notation dN uN δN vN sN wN cN γN

We nowwork through the use of the cumulative lists in the example tree to show
how the cumulative lists can reduce the amount of computation in that case. This is
summarised in Table 2.

For two Q-matrix parameters β and γ, Recall that the derivative ∂2L
∂β∂γ

is given as∑
e,e′

∂2L
∂βe∂γe′

, and that furthermore, we divided this sum into four sums.

∂2L
∂β∂γ

=
∑
e<e′

∂2L
∂βe∂γe′

+
∑
e>e′

∂2L
∂βe∂γe′

+
∑
e//e′

∂2L
∂βe∂γe′

+
∑
e=e′

∂2L
∂βe∂γe′
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Using the cumulative lists, the above sums can be rewritten as sums over the
nodes on the example tree, as follows:∑

N=U,V

uN
TΠ

∂P(te′)

∂γe′
cβN +

∑
N=U,V

uN
TΠ

∂P(te)

∂βe
cγN+

πT
∑

N=R,U,V

(
vN#γβN1

#γγN2
+ vN#γγN1

#γβN2

)
+

∑
e

∂2L
∂βe∂γe

This reduces the original sums over 30 pairs of distinct edges e , e′ to just 10
terms. as shown in Table 2. The terms with e = e′ are dealt with in the next section.

Table 2: Illustrative example: cumulative lists cover components of the sum∑
e,e′

∂2L
∂βe∂γe′

for distinct pairs of branches, with 30 pairs of branches reduced to just
10 terms.

e′

RU UW UX RV VY VZ
RU l1
UW l7
UX

l3 l8
l5

RV l2
VY l9

e

VZ
l6 l4 l10

l1 = uU
TΠ

∂P(tRU)

∂β
cγU l2 = uV

TΠ
∂P(tRV)

∂β
cγV l3 = uU

TΠ
∂P(tRU)

∂γ
cβU

l4 = uV
TΠ

∂P(tRV)

∂γ
cβV l5 = πT (γβU#γ

γ
V) l6 = πT (γγU#γ

β
V)

l7 = πT (vU#γβW#γ
γ
X) l8 = πT (vU#γβX#γ

γ
W) l9 = πT (vV#γβY#γ

γ
Z)

l10 = πT (vV#γγY#γ
β
Z)
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3.2 Speeding up Computation of Second Derivatives of the P-
Matrix

Calculating the second derivative of eDt with respect to two parameters in the way
described in Theorem 1 requires a lot of computation. Recall that:(

∂2(eDt)

∂β∂γ

)
i j
=

(Nβγ)i j(edit − ed jt)

di − d j
+

∑
k

((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j) hi jk

where hi jk =
edit

(di−d j)(di−dk)
+ ed jt

(d j−di)(d j−dk)
+ edkt

(dk−d j)(dk−di)
.

Calculating this takes O(n3) operations, where n is the number of rows (or columns)
of the Q-matrix (so 4 for nucleotide data, 20 for amino acid data and 61 for codon
data in standard genetic code), and it needs to be calculated for each branch, and
for each pair of parameters, and each site. This leads to complexity of O(bp2n3S ),
where b is the number of branches, p is the number of parameters and S is the
number of sites.

These second derivatives are used to calculate terms of the form
∑

e
∂2L
∂βe∂γe

, which
are given by the formula ∑

e

∂2L
∂βe∂γe

=
∑

e

wT
N
∂2eDte

∂βe∂γe
sN

where N is the bottom node of e. If we ignore for the moment the cases where two
of di, d j and dk have equal values, we can break the second terms for each edge in
the above sum into three separate sums:

Sum 1 =
∑

k

((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j))
edit

(di − d j)(di − dk)

Sum 2 =
∑

k

((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j))
ed jt

(d j − di)(d j − dk)

Sum 3 =
∑

k

((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j))
edkt

(dk − d j)(dk − di)

The benefit of doing this is that for Sum 1 and Sum 2, the parts that depend on
the branch length are constant factors, so the sum can be performed once for all
branches, and for all sites. The part depending on the branch lengths does not depend
on the parameters β and γ. Thus we can compute the term in

∑
e

∂2L
∂βe∂γe

that is derived
from Sum 1 as∑

i, j

∑
N

wN,isN, jedit

 ∑
k

(((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j))

(di − d j)(di − dk)
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Thus for each site, it requires O(bn2) operations to compute the first term (sum
over all branches), and O(p2n2) operations to calculate these sums for each pair of
parameters.

We can rewrite Sum 3 as:∑
k

(Nβ)ik

(dk − di)
×

(Nγ)k j

(dk − d j)
× edkt +

∑
k

(Nγ)ik

(dk − di)
×

(Nβ)k j

(dk − d j)
× edkt

These are just matrix products, and so, when we want to calculate wT
N
∂2eDte

∂βe∂γe
sN , the

formula is∑
i, j,k

wN,isN, j
(Nβ)ik

(dk − di)
×

(Nγ)k j

(dk − d j)
× edkt +

∑
i, j,k

wN,isN, j
(Nγ)ik

(dk − di)
×

(Nβ)k j

(dk − d j)
× edkt

We can break the first term up as

∑
k

∑
i

wN,i
(Nβ)ik

(dk − di)

 ×
∑

j

sN, j
(Nγ)k j

(dk − d j)

 × edkt

and the second term can be broken up similarly.
Now each of the inner sums can be performed just once for each parameter,

requiring a total of O(bpn2S ) operations. In fact, the sum tβN =
∑

i wN,i
(Nβ)ik

(dk−di)
is part

of the computation of the cumulative list γβN , so we can simply store the values when
we calculate them at that time. The outer sum requires only O(bp2n) operations at
each site. This means that the overall calculation of this component of the second
derivative requires onlyO(bpn2+bp2n) operations for each site, and in preparation,
we needO(p2n3) operations for calculating the components of the second derivative
related to the Sum 1 and Sum 2 above.

3.3 Dealing with Equal Values
The preceding observations give good motivation for trying to break the sum into
three parts. However, this does not completely work as described above, because
the above formula relies upon cancellation of infinite values when di, d j and dk are
not all distinct (this is not just a theoretical possibility with negligible probability,
because we need to consider the cases where i = j, i = k or j = k). (We will use
the notation i ∼ j to mean di = d j, at least approximately.)

We give the formulae explicitly for the cases i ∼ j and i ∼ j ∼ k. The other
formulae are obtained by symmetry. When i ∼ j, the terms edit

(di−d j)(di−dk)
+ ed jt

(d j−di)(d j−dk)

are replaced by tedit

(di−dk)
− edit

(di−dk)2
. When i ∼ j ∼ k, the whole sum is replaced by t2edit

2
.
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We have to deal with these cases separately. We have the three sums at the start
of the preceding section, and each sum has to be computed for all possible cases of
equality between the di, d j and dk (a total of 5 possibilities). In equality cases, two
or three of the sums combine into a single sum.

Also, some of the cases are treated in exactly the same way, meaning that they
can be combined into a single matrix, to increase the computational efficiency. We
will define 4 matrices as follows. Table 3 summarises which of these matrices ac-
counts for each term. [Note that the Sum 3 cases when dk is not equal to di or d j are
computed in a different way, and do not need a matrix to be prepared in advance.]

Table 3: Various equality cases for second derivatives of the exponential of a matrix

Sum 1 Sum 2 Sum 3∑
k

Ni jkedit

(di−d j)(di−dk)

∑
k

Ni jked jt

(d j−di)(d j−dk)

∑
k

Ni jkedkt

(dk−d j)(dk−di)

di, d j, dk all distinct P R
di = d j S+P
d j = dk P T+R
di = dk S+P P S+P

di = d j = dk T

First denote Nik j = (Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j, then define

Pi j =



∑
k/i

−
Nik j

(di − dk)2
if i ∼ j∑

k/i
k/ j

Nik j

(di − d j)(di − dk)
−

∑
k∼i

Nik j

(di − d j)2
+

∑
k∼ j

Nik j

(di − d j)2
if i / j

(1)

Ri j =


0 if i ∼ j∑
k/i
k/ j

Nik j

(di − dk)(d j − dk)
+

∑
k∼i

Nik j

(di − d j)2
−

∑
k∼ j

Nik j

(di − d j)2
if i / j (2)

S i j =


∑
k/i

Nik j

(di − dk)
if i ∼ j∑

k∼i

Nik j

(di − dk)
if i / j

(3)
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Ti j =


∑
k∼i

Nik j

2
if i ∼ j∑

k∼ j

Nik j

(dk − di)
if i / j

(4)

Now if X is the second derivative of eDt, then wT Xs can be expressed as∑
i, j

wis j
(Nβγ)i j(edit − ed jt)

di − d j
+∑

i, j

wis j

(
Pi jedit + Ri jed jt + S i jtedit + Ti jted jt

)
+

∑
i∼ j

wis jTi j(t2 − t)ed jt +

∑
k


∑

i/k

wi(Nβ)ik

di − dk


∑

j/k

s j(Nγ) jk

d j − dk

 +
∑

i/k

wi(Nβ)ik

di − dk


∑

j/k

s j(Nγ) jk

d j − dk


 edkt

3.4 Algorithm
We now describe in full the algorithm for calculating all first and second derivatives
for each site for a given tree with root R. (Choice of root does not affect the answer).
Denote the vector of equilibrium frequencies by π and the diagonal matrix whose
entries are π by Π. We refer to a general node as N, and its children as N1, . . . ,Nk.
(For a binary tree, k is 2 at internal nodes and 0 at leaf nodes.) When N is the bottom
node of e, we write e = N. We denote the length of the branch above N by te.

1. Diagonalise the Q-matrix, Q = ADA−1.

2. For each parameter β affecting the Q-matrix, calculate the derivative Mβ of
the Q-matrix with respect to β, and its conjugate Nβ = A−1MβA.

3. For each pair of parameters β and γ, calculate the matrices Pi j,Ri j, S i j,Ti j

defined in (1)–(4).

4. Calculate the Down and Up lists for likelihood:

(a) For a leaf node N, dN,i = 1 if the data at node N is i, and 0 otherwise.
(b) The other Down lists are calculated recursively, using the formulae:

sN = A−1dN

δN = AeDtsN

dN = δN1
# . . . #δNk

[sN and δN do not need to be calculated at the root node.]
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(c) Calculate the Up lists for the nodes R1, . . . ,Rk directly below the root
node, using the formula:

uRi = δR1
# · · · #δ̂Ri# · · · #δRk

where δ̂Ri indicates that the term δRi is omited.
(d) Calculate all other Up lists for nodes below the root node, using the

recursive formulae:

wN = ATΠuN

vN = Π−1(A−1)T eDtwN

uNi = vN#δN1
# · · · #δ̂Ni# · · · #δNk

[Note that, assuming reversibility, Π−1(A−1)T = A, see Appendix 1 for
details.]

5. For each branch e, form the down lists dte
N , δ

te
N and ste

N for every node N above
e (N > e), and the lists δte

N and vte
N for the bottom node of e (N = e), using the

recursive formulae:

dte
N = δN1

# · · · #δte
Ni
# · · · #δNk where e 6 Ni

ste
N = A−1dte

N

δte
N =

{
ADeDtsN if N = e
AeDtste

N if N > e

and the formula

vte
N = Π−1(A−1)T DeDtwN (when N = e)

[Again, in the reversible case, we can replace Π−1(A−1)T by A. Alternatively,
since all uses of vte

N involve multiplying by Π, we can directly compute Πvte
N .

We use this form here because it preserves the meaning of vte
N as ∂vN

∂te
.]

6. For each parameter β affecting the Q-matrix, form the cumulative lists cβN , γ
β
N

and the list tβN (defined below) using the recursive formulae:

cβN =

{
0 if N is a leaf∑k

i=1 δN1
# · · · #γβNi

# · · · #δNk otherwise

tβN = GβsN
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γ
β
N = A(eDtA−1cβN + eDttβN −GβeDtsN + tZsN)

where

Zi j =

{
edit if i ∼ j
0 if i / j and Gβ

i j =

 (Nβ)i j

d j−di
if i / j

0 if i ∼ j

[Note: the condition i ∼ j includes all the diagonal entries of the matrix and
those off-diagonal entries for which di = d j.]
Also calculate

ψ
β
N = GβwN

vβN = Π−1(A−1)T (eDtψ
β
N − (G

β)T eDtwN + teDtwN)

7. Form the first derivatives.

(a) For each branch e, ∂L
∂te

= πT (dte
M#vM), where M is the top node of e

(or indeed any node above e). Alternatively ∂L
∂te

= (dN)
T (∂eQte

∂te
)TΠuN =

sT
N(DeDte)wN , where N is the bottom node of e.

(b) For each parameter β affecting the Q-matrix, the first derivative is πT cβR.

8. Form the second derivatives with respect to branch lengths.

(a) For each branch e, ∂2L
∂t2e

= (dN)
T (∂

2eQte

∂t2e
)TΠuN = sT

N(D
2eDte)wN , where

e = N.
(b) For each pair of distinct branches with e′ < e, let N be the bottom

node of e, then ∂2L
∂te∂te′

=
(
∂dN
∂te′

)T
(∂eQte

∂te
)TΠuN = (dte′

N )T (QeQte)TΠuN =

(ste′
N )T (DeDte)wN .

(c) For each pair of distinct branches with e′//e, if N is the lowest node
above both of them and e 6 N1 and e′ 6 N2 where N1 and N2 are two
distinct children of N, then ∂2L

∂te∂te′
= πT (δte

N1
#δte′

N2
#...#δNk#vN). [The vN

can be omited if N is the root node.]

9. Form the second derivativeswith respect to parameters affecting theQ-matrix.
For each pair of parameters β and γ,

∂2L
∂β∂γ

=
∑
e<e′

∂2L
∂βe∂γe′

+
∑
e′<e

∂2L
∂βe∂γe′

+
∑
e//e′

∂2L
∂βe∂γe′

+
∑
e=e′

∂2L
∂βe∂γe′

(5)

We calculate this as the sum of all the following terms:
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(a) the sum of the first two terms in the Equation (5) can be calculated as∑
N

((cβN)
TΠvγN + (cγN)

TΠvβN)

(b) The third term in Equation (5), i.e. the cases where e//e′, is obtained by
summing the following terms over all nodes N which are not leaf nodes.∑

16i, j6k

πT (δN1
# · · · #γβNi

# · · · #γγN j
# · · · δNk#vN)

[The vN can be omitted if N is the root node.]
(c) The sum over e = e′ is calculated as the following sum:

∑
i, j,N

sN,iwN, j
(Nβγ)i j(edite − ed jte)

di − d j
+

∑
i, j

∑
N

sN,iwN, jedit

 P(β, γ)i j +

∑
N

sN,iwN, jed jt

 R(β, γ)i j+∑
N

sN,iwN, jtedit

 S (β, γ)i j +

∑
N

sN,iwN, jted jt

 T (β, γ)i j

+∑
i∼ j

∑
N

sN,iwN, j(t2 − t)ed jt

 T (β, γ)i j

 + (tβN)
T eDtψ

γ
N + (tγN)

T eDtψ
β
N

[If β and γ are the same parameter, some of the above sums in (a), (b) and
(c) are equal, so it is possible to save a small amount of computation by only
computing them once.]

10. Form the second derivatives with respect to a branch length te and a parameter
β affecting the Q-matrix.

∂2L
∂te∂β

=
∑
e′<e

∂2L
∂te∂βe′

+
∑
e′>e

∂2L
∂te∂βe′

+
∑
e′//e

∂2L
∂te∂βe′

+
∑
e=e′

∂2L
∂te∂βe′

We calculate this as the sum of the following terms:

(a) Suppose e = N, the first term in the equation is:∑
e′<N

∂2L
∂te∂βe′

= (cβN)
T (
∂eQte

dte
)TΠuN = (cβN)

T vte
N
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(b) Suppose e′ = N, the second term in the equation is:∑
e′>e

∂2L
∂te∂βe′

=
∑
N>e

(dte
N)

T (
∂eQte′

∂βe′
)TΠuN =

∑
N>e

(dte
N)

T vβN

(c) For each node N which is above e, suppose that e 6 N1 where N1 is an
immediate descendent of N. The sum of following terms over all such
nodes N, gives the sum of the cases where e′//e.∑

2≤i≤k

πT (δte
N1
#δN2

# · · · #γβNi
# · · · #δNk#vN)

(d) The fourth term in the equation is:

∂2L
∂te∂βe

= (dN)
T (
∂2eQte

∂te∂βe
)TΠuN = sT

N(
∂2eDte

∂te∂βe
)T wN =

sT
N(
∂(DeDte)

∂βe
)T wN = (sN)

T

(
NβeDte + DNβ

edite − ed jte

di − d j

)
wN

3.5 Complexity
Having explained how to find the Hessian, we now examine the complexity of the
algorithm. We will use the following variables for definition of the complexity:

n Number of rows (or columns) of the Q-matrix (61 for codon models using
standard genetic code, 20 for amino acid models, 4 for nucleotide models)

b Number of branches in the tree (or total number of nodes)
h Height of the tree
p Number of non-branch-length parameters
S Number of sites
The calculated complexities for the most expensive parts of the computation are

summarised in Table 4. Full details of the derivation of the complexity are in the
Appendix 2. Typically, for codon or amino acid data, we have p < n < S and
p < b < S , so that the most expensive steps in Table 4 have complexity O(b2nS )
and O(bpn2S ).

For comparison, calculating only the first derivatives in the manner described
above requires O(bpn2S ) computations. (It can be improved to O((b + p)n2S ).)
This means that asymptotically, this method is as efficient as can reasonably be
expected. Furthermore, it indicates that the method can be practically used in place
of numerical methods for finding the derivatives.
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Table 4: Complexity of the most expensive steps in the algorithm

Algorithm step and the calculation Complexity
3. Calculate matrices for each pair of parameters p2n3

5. Create branch-length lists bhn2S
6. Create parameter cumulative lists bpn2S
8c. Two branch lengths e//e′ b2nS
9iii. Two parameters on the same branch (bpn2 + bp2n + p2n2)S
10a,b,c. branch length and parameter not on

the same branch
bhpnS

10d. branch length and parameter on the
same branch

bpn2S

4 Applications
In this section, we discuss three applications of the Hessian matrix calculation, to-
gether with comparisons to alternative methods.

As indicated earlier, both the average outer product of scores and the negative
Hessian are often used as estimators of Fisher information matrix, because under
some mild regularity conditions, we have

E
(

∂2

∂β∂βT log f (X|β)
)
= −E

(
∂

∂β
log f (X|β) ∂

∂βT log f (X|β)
)
, (6)

Thus an approximation to the Hessian can be conveniently calculated:

N∑
i

∂2

∂β∂βT log f (xi|β) '
N∑
i

∂

∂β
log f (xi|β)

∂

∂βT log f (xi|β), (7)

where the sum is taken over the sites in the data. Seo et al. (2004) have used this
approximation in the fast estimation of species divergence time in a Bayesian set-
ting where the log likelihood function was approximated by its Taylor expansion
around the MLE of the parameters. They use a numerical approximation to the first
derivative and use the above equation to estimate the Hessian by the outer product
of the approximate first derivatives.

To study the accuracy of this approximation, we simulated several data sets with
different sequence lengths based on the M0 model. Figure 3 shows the differences
between the outer product of scores approximation, based on the analytic solution of
the first derivatives, and exact Hessians for the simulated data sets of various sizes.
From Figure 3, we see that for very long sequences the approximation is indeed
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(c) 9000 nucleotides
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Figure 3: Comparison of exact and approximate Hessians for various sequence
lengths.

very good. However, for shorter sequences, the comparison is much less good. It
is important to note that while the errors are small compared with the overall size
of the matrix, a lot of entries have large relative errors, and the same is true for the
inverse of the Hessian matrix. We will compare the exact Hessian matrix and the
approximate Hessian from (7) based on the analytic solution of the first derivatives,
for the following applications, and compare both of them with existing methods.

4.1 Optimisation Using the Newton-Raphson Method
The Newton-Raphson method is a popular method for non-linear optimisation. It is
based on a quadratic approximation obtained using the Hessian matrix and the gra-
dient vector. In the absence of Hessian calculation, optimisation algorithms must
either use numerical approximations which are often hampered by numerical preci-
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sion issues, or use an alternativemethod, such as Quasi-Newtonmethods. A number
of software packages for phylogenetic analysis have used Quasi-Newton methods.
Through the following time trials, we show that the Newton-Raphson method based
on our Hessian calculation provides an efficient alternative for the optimisation of
phylogenetic likelihood functions.

We ran our software COLD and a popular software PAML (Yang, 2007), which
uses a quasi-Newton method, to compare convergence times on a range of data sets,
distributed with the PAML package, using the model M0 (Goldman, Yang 1998). It
is important to note that this is a comparison between two different implementations
of the different methods. There can be a large difference between two implemen-
tations of the same method, so the results of this time trial should not be taken as a
thorough comparison between quasi-Newton methods and Newton-Raphson meth-
ods. There are various factors which give one piece of software an advantage over
another in this time trial. PAML has been developed many years ago, and has un-
dergone many years of fine-tuning, so it would be expected to include more opti-
misations not yet implemented in COLD. PAML is a very ad-hoc software package
— it is designed to fit models based on M0, so it can assume that the model in
question is M0, and make appropriate optimisations (for example, no simultaneous
multiple-nucleotide changes), while COLD is designed to be more general software,
for fitting a wide class of models, and therefore is more limited in the optimisations
available. The data sets were distributed with PAML, so they are data sets on which
PAML has been developed, thus optimisations that are important for these data sets
are more likely to be included in PAML. On the other hand, the time trials were run
on the machine on which COLD was developed, and the programs were compiled
using the same compiler that was used in developing COLD, so some optimisations
in COLD may be specific (or at least most important) to that machine setup.

We also include a comparison with a Newton-Raphson method using the ap-
proximate Hessian given by (7). We do not know of any software that uses this
method for Newton-Raphson optimisation, but the potential is clear. The approxi-
mate Hessian method was coded specifically for this comparison, and optimisation
was using the same Newton-Raphson routine as COLD, which may not be the most
appropriate. To make fair comparisons, we ran COLD in single-threaded mode, al-
though it permits multi-threaded (parallel) execution, and thus it can run faster than
indicated here on modern computers.

Table 5 gives the median running times from 3 runs of the same starting values
for the three programs on a range of data sets, with each data set evaluated with
each program for two different starting values, near to the optimum. (Details of the
time trial are in the supplemental material). All programs converged to the same
log-likelihood values at the same MLE. We see that the times are comparable, and
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there are several cases where the Newton-Raphson method greatly speeds up opti-
misation. This clearly demonstrates the potential of the Newton-Raphson method.

Comparing exact Hessian and approximate Hessian calculations, the Newton-
Raphson method based on exact Hessian generally converges in very few steps,
but in some cases this benefit in terms of number of steps until convergence is not
sufficient to justify the computation time needed to calculate an exact Hessian at
each step. The Newton-Raphsonmethod based on approximate Hessian needsmany
more steps to converge, but is very fast calculating the approximate Hessian at each
step, since it only involves calculating first derivatives for each site. This advantage
especially shows in the cases of longer sequences where the Hessian approxima-
tion is close enough to the Hessian. However, the accuracy is limited for shorter
genes, so the number of steps required (and therefore total time) can increase sig-
nificantly. In order to gain the benefits of both methods in the appropriate cases, it
should be possible to develop a hybridmethodwhich occasionally performs an exact
Hessian calculation, and uses approximations the rest of the time. Possibly, com-
puting approximate Hessian matrices in the early stages of the optimisation where
the quadratic approximation is less accurate and thus errors in the approximation
are less serious, and computing the exact Hessian in later stages when it can lead to
quicker convergence. We hope that in near future more efficient implementations
of the Newton-Raphson method will be available.

4.2 Inference
The availability of Hessian matrix allows us to use likelihood theory for inference
for the model parameters. Previously, inference for parameter estimates obtained
by maximising the likelihood function in phylogenetic analysis has mostly been
based on bootstrap methods, which are very time consuming. The Hessian matrix
evaluated at the MLE provides an estimate for the asymptotic variance of the pa-
rameter estimates, which we now use to calculate confidence intervals (CIs) for the
parameter estimates.

We demonstrate the CIs calculated by the exact Hessian (Hessian method) on
simulated data sets, comparing with CIs obtained using non-parametric bootstraps
(Bootstrap method) and using the outer product of scores approximation to the
asymptotic variance (Scores method) given by (7).

We simulated two scenarios with different sequence lengths based on a 10-taxon
tree. The tree topology used for the simulation is from Bielawski and Yang (2005)
with the out group removed, as shown in Figure 4. The first scenario has sequence
length 100 codons, and the second has sequence length 300 codons. We simulated
100 data sets in each scenario. The M0 model is used to simulate and analyse the
data on the same tree topology, so there is no model misspecification. We calcu-
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Table 5: Median running times (from 3 runs) for running COLD, PAML and COLD
with the approximate Hessian calculation using the Scores method, on various data
sets. (Full details in supplementary material.)

Data Set Taxa Sites COLD PAML Approximate
Hessian

mtCDNAmam 20 3331 7:41 10:26 7:02
8:30 10:09 7:10

mtCDNApri 7 3331 2:21 0:46 0:55
2:07 0:54 0:48

MouseLemurs 35 604 3:14 12:02 2:42
2:56 10:28 2:39

LysozymeSmall 7 130 0:07 0:04 0:05
0:06 0:06 0:05

HIVenvSweden 13 91 0:09 0:09 0:25
0:10 0:10 0:17

Lysin 26 122 0:33 2:00 1:48
0:33 2:01 1:20

lated 95% CIs for each of 17 branch lengths using each method. The CIs based
on likelihood theory are symmetric about the MLEs. The non-parametric bootstrap
CIs are calculated based on 100 bootstrap replicates from each simulated data set
and these CIs are not necessarily symmetric about MLEs. The empirical coverage
rate was calculated as the percentage of times the true branch length was covered
by the CIs for each branch length. The standard error for each coverage rate is√
(.95)(.05)/100 = 0.0218, so a statistically significant difference from the nomi-

nal coverage rate of 0.95 would be 0.0436. The mean and standard deviation of the
width of the CIs for each branch length are also calculated over 100 simulations.
We show these results in Figure 5.

From Figure 5, we can see that the CIs calculated by the Hessian and bootstrap
methods are very close according to both the coverage and mean width of CIs. The
standard deviation of the width of CIs obtained using the bootstrap method is larger
than that obtained using the Hessian method. This can be improved by increasing
the bootstrap replicates. However the Hessian method uses only a fraction of the
time of the bootstrap method to calculate these CIs even with the replicate number
set as only 100. It is also noted that the joint confidence regions (CRs) of multiple
parameters or simultaneous testing for multiple parameters are also directly avail-
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able from the Hessian method, but it would require significantly more bootstrap
replicates to obtain comparable accuracy for such CRs or simultaneous testing.

The coverage rates for the CIs obtained by the Scores method for shorter branch
lengths are within the range of 0.95± 2SE (shown by the two horizontal lines in the
plot). But the coverage rates for the Scores method are significantly lower than the
nominal level for the longer branch lengths. The mean widths of CIs for the Scores
method are larger when the true branch lengths are short, and much smaller than
that of other methods when the true branch lengths are longer. These results are
consistent because the standard deviation of the width of CIs for the Scores method
are all relatively small. It is clear that the Scores method does not yield inference
results that are comparable to the other two methods. This is consistent with the ob-
servations in Porter (2002), where various estimators for Fisher information and the
resulting confidence intervals are compared in a regression setting and the observed
information matrix (Hessian method) was found to perform better than the Scores
method. For inference, the gain in computation speed from using the Scores method
has little benefit, since the time required to perform a full Hessian calculation at the
MLE is negligible compared to the time needed to optimise the dataset.

It is worth noting that the Scores method is quite popular. It has been imple-
mented in the software multidivtime for studying rates of molecular evolution and
for estimating divergence times (Thorne, Kishino& Painter, 1998). TheMCMC im-
plementation there requires many evaluations of likelihood for different parameter
values. To make the computation feasible, the log-likelihood surface is approxi-
mated with a multivariate Gaussian distribution centered at the MLE of the param-
eters and with covariance matrix obtained using the Scores method. The Hessian
calculation presented in this paper should be able to improve the likelihood approx-
imation in the software multidivtime, especially when the sequence lengths are
relatively small.

4.3 Local Influence Analysis
Whenever we make inferences from statistical models and data, it is important to
know whether the inferred results are supported by the majority of the data, or are
caused mainly by a few extreme observations. Influence analysis measures the ex-
tent to which each observation affects the overall results. This can be used to identify
data points which do not satisfy the model assumptions. These data points may lead
us to important biological conclusions. For example, if some sites within a gene are
under positive selection, then when we analyse the data under a model without rate
variation among sites, these sites will have a large positive influence on the esti-
mated value of the nonsynonymous/synonymous ratio ω. We will give an example
of this use of influence analysis.
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There are a number of different methods for influence analysis. Traditionally,
influence analysis in Phylogeny has been performed using deletion influence, which
involves removing part of the data and re-analysing the remainder to determine how
much influence the removed data has. This process can be prohibitively time con-
suming — for every site whose influence we want to estimate, we need to perform
a new optimisation.

Local influence analysis examines the effect on parameter estimates of small
changes to the data. It does this by viewing the parameter estimates as a function of
the data, and taking the derivative of this function. For continuous data, there are
obvious ways in which we can view the parameter estimates as a differentiable func-
tion of the data. For the discrete data in phylogeny, we need to extend the possible
data points into a continuous space. One easy way to do this is to assign a weight
to each site of the data, which represents the frequency with which that site pattern
was observed (so a weight of 1 represents a single occurance of that site pattern,
a weight of 2 represents two occurances, and so on). Deletion influence considers
the effect of changing the weight of a particular site pattern to zero. The overall
log-likelihood is given by the log-likelihood of each site pattern multiplied by the
corresponding weight. We can obtain a continuous data space by using non-integer
weights. That is, even though we cannot observe a particular site pattern 3

2
times,

we can still calculate the likelihood and parameter estimates under the assumption
that we did observe the pattern this many times. Now the parameter estimates are a
differentiable function of the weights of each site, and the derivative of a parameter
estimate with respect to the weight of a particular site is a measure of the influence
of that site on that parameter estimate.

Let wi represent the weight of site i. Let θ be the vector of parameters that we
will optimise. The log-likelihood l is a function of both the weights wi and the
parameters θ. The MLE is a function θ̂(wi) of the weights, satisfying ∂l

∂θ

∣∣∣
θ̂(wi)

= 0.
Differentiating both sides of this equation with respect to wi, we get that

∂2l
∂θ∂θT

∂θ̂

∂wi
+

∂2l
∂θ∂wi

= 0, (8)

holds when the derivatives are evaluated at θ̂(wi). We rearrange this to get:

∂θ̂

∂wi
= −

[
∂2l
∂θ∂θT

]−1 [
∂2l
∂θ∂wi

]
(9)

The first term in the above result is the Hessian matrix and the second term is
the first derivative of the site log-likelihood with respect to the parameters (since
∂l
∂wi

is just the log-likelihood of site i). Therefore, our Hessian calculation allows us
to calculate the local influence of a site.
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As an example of the application of this, we use influence analysis to detect
sites under positive selection. We simulated 100 data sets consisting of 300 codon
sites each. Of these 300 sites, the first 30 were under positive selection (ω = 2).
The next 10 were under approximately neutral selection (ω = 0.8), and the other
260 were under negative selection (ω = 0.03). We then calculated the maximum
likelihood estimator under model M0, and the local influence of each site on the
estimate of ω. The local influence function for a typical data set is shown in the left
panel of Figure 6. From this figure, we can clearly see that our influence analysis
has detected most of the sites under positive selection.

The standard method for detecting positive selection is to fit a mixture model
such as M2 (Yang et al, 2000) and use a likelihood ratio test to compare with a
model without positive selection. (Note that M2 is slightly misspecified in our sim-
ulated data sets, because it assumes a class of sites under exactly neutral selection,
rather than approximately neutral selection as was simulated.) Oneway inwhich our
influence analysis method has a clear advantage over a mixed model is in computa-
tion time. Once the parameters have been optimised for a simple model, performing
influence analysis requires only a single Hessian calculation, whereas the mixture
model method requires a completely new optimisation, with a more complicated
model. This means that our influence analysis is valuable as a diagnostic tool for
quickly deciding whether a particular data set merits more detailed investigation.

The right panel of Figure 6 shows the local influence of the sites against the pos-
terior probability of positive selection for all sites from a random sample of 20 data
sets out of 100 simulated data sets. (The data from all 100 data sets shows a similar
pattern, but is more difficult to see because the figure is more cluttered. The anal-
yses from all 100 simulated data sets are available in the supplementary materials.)
From this figure, it is not clear whether the influence analysis or the mixed model
provides better results in terms of classification of sites. However, since the two
methods provide different classifications, the influence analysis is providing addi-
tional information not available from the mixture model analysis. Therefore, we
expect that combining the information from the two methods will give us a more
accurate classification of sites under positive selection. The question of how best to
combine the information from both analyses is an ongoing project of the authors, and
will hopefully be published soon, along with other applications of local influence
analysis in phylogeny, such as detecting heterotachy in ω (or other parameters).

5 Conclusions and Future Work
We have presented a method for calculating the second derivatives of likelihood for
phylogeny, with respect to a wide range of parameters affecting the rates of substitu-
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Figure 6: Influence of each site on the estimate ofω for one data set (left) and for 20
data sets randomly sampled from 100, against the logit transformation of posterior
probability of positive selection under model M2 (right).

tions and branch lengths. We then developed methods improving the computational
efficiency of this calculation. The complexity analysis of the algorithm presented
in Section 3.5 demonstrates that the program scales well to larger trees. The method
presented here can be applied to DNA, amino acid or codon models. Indeed the
method could also be applied to other Markov chain models. This computation is
implemented in our software COLD, which is available from the first author’s web-
site at http://www.mathstat.dal.ca/~tkenney/Cold/
In future work, we plan to extend this implementation to wider classes of models
(see Section 2.1 for details of the assumptions that we hope to easily relax).

This Hessian calculation has the potential to be applied in a number of ways in
Phylogeny. Firstly, it allows us to use the Newton-Raphson method to maximise
likelihood. It is well known that with a good starting value, the Newton-Raphson
method converges very fast. Parsimonious methods can usually provide reasonably
good starting values. Thus the Newton-Raphson method can be implemented in
a wide variety of models in phylogeny. Fast computation can also help with tree-
search problems. In future work, we plan to study this optimisation issue in more
detail, and combine our Hessian calculation with the faster approximations such as
the Scores method, in order to get the benefits from both methods.
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The availability of the Hessian matrix calculation allows us to use likelihood
theory for inference for the model parameters. Previously, inference for parameter
estimates obtained by maximising the likelihood function in phylogenetic analysis
has mostly been based on bootstrap methods, which are very time consuming. We
demonstrated that, for confidence intervals, using the approximate Hessian calcu-
lation by the Scores method does not provide the same accuracy as using the exact
Hessian. In future work, we plan to fully develop the potential of the Hessian matrix
in different kinds of inference problems in phylogeny, and we also plan to obtain a
calculation of the Fisher information matrix, to be used for inference in phylogeny.

The availability of the Hessian matrix also allows us to apply local influence
methodology to explore whether the model-data agreement support the model as-
sumptions, or whether the analysis results are sensitive to the model and/or data.
These diagnostic results can be useful for detecting sites, or potentially lineages,
which do not fit the model assumptions. The insight gained in such analysis can
lead us to significant model improvement and/or biological conclusions, as seen in
the positive selection application in this paper.

Appendix 1: Differentiating the P Matrix
Theorem 1. Suppose parameters β and γ are two parameters which influence the
Q matrix, and the following derivatives are readily available: ∂Q

∂β
= Mβ, ∂Q

∂γ
= Mγ

and ∂2Q
∂β∂γ

= Mβγ. Then we have:

1. If the process is reversible, then for any parameter values, Q is diagonalisable
as Q = ADA−1.

2. For any invertible constant matrix C, we define X = C−1QC, so that Q =
CXC−1, and we have that

∂P
∂β

=
∂

∂β

(
eQt

)
= C

∂(eXt)

∂β
C−1,

and we define Nβ =
∂X
∂β

= C−1MβC. Now, for a given set of parameter values
θ0, if Q(θ0) is diagonalizable as Q(θ0) = ADA−1, then by choosing C = A in
the above expression, X(θ0) is equal to the diagonal matrix D with entries di,
and the i jth entry of the matrix ∂(eXt)

∂β

∣∣∣∣
θ0
is given by

 ∂(eXt)

∂β

∣∣∣∣∣∣
θ0


i j

=

 (Nβ)i j(edit−ed jt)

di−d j
if di , d j

(Nβ)i jtedit if di = d j
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Note that the above result for di = d j is also the limit of the fractional form
for di , d j, when d j → di, as can be seen e.g. by using L’Hopîtal’s rule.

3. Furthermore, denoting Nγ = A−1MγA and Nβγ = A−1MβγA, the second
derivative of the transition matrix Pwith respect to parameters β and γ (which
could be the same parameter) can be written as

∂2P
∂β∂γ

∣∣∣∣∣∣
θ0

= A
∂2(eXt)

∂β∂γ

∣∣∣∣∣∣
θ0

A−1,

where the i jth entry of matrix ∂2(eXt)

∂β∂γ

∣∣∣∣
θ0
is given by the following, with appro-

priate limiting values taken in the cases when di = d j, di = dk, or d j = dk: ∂2(eXt)

∂β∂γ

∣∣∣∣∣∣
θ0


i j

=
(Nβγ)i j(edit − ed jt)

di − d j
+

∑
k

((Nβ)ik(Nγ)k j + (Nγ)ik(Nβ)k j) hi jk

where hi jk =
edit

(di−d j)(di−dk)
+ ed jt

(d j−di)(d j−dk)
+ edkt

(dk−d j)(dk−di)
.

Proof. 1. By the symmetry condition, we have that Q = RΠ, where R is sym-
metric and Π is diagonal and R and Π are non-negative definite. We can
rewrite this as Q = Π−

1
2 (Π

1
2 RΠ

1
2 )Π

1
2 . Since the middle composite is real

symmetric, it is diagonalisable, say (Π
1
2 RΠ

1
2 ) = HDH−1 for some orthogo-

nal matrix H and diagonal matrix D. Thus we have that Q is diagonalisable
as Q = ADA−1, where A = Π−

1
2 H is the matrix of left eigenvectors of Q, and

D is the diagonal matrix of eigenvalues.

2. The first statement is obvious. [ Note: The property eCXC−1 = CeXC−1 used
in that statement is true for any two matrices C and X.]

We want to find ∂(eXt)

∂β

∣∣∣∣
θ0
in the case where X(θ0) is a diagonal matrix D with

entries di. By definition, eXt =
∑∞

n=0
Xntn

n! , and by the product rule,
∂(Xn)

∂β

∣∣∣∣
θ0
=∑n

k=1 Dk−1NβDn−k. Now since D is diagonal with entries di, we have that ∂(Xn)

∂β

∣∣∣∣∣∣
θ0


i j

=
n∑

k=1

dk−1
i (Nβ)i jdn−k

j =

 (Nβ)i j
dn

i −dn
j

di−d j
if di , d j

n(Nβ)i jdn−1
i if di = d j

Summing over n, we therefore get ∂(eXt)

∂β

∣∣∣∣∣∣
θ0


i j

=
∞∑

n=0

tn

n!

 ∂(Xn)

∂β

∣∣∣∣∣∣
θ0


i j

=

 (Nβ)i j(edit−ed jt)

di−d j
if di , d j

(Nβ)i jtedit if di = d j

Note that the above result for di = d j is also the limit of the fractional form
for di , d j, when d j → di, as can be seen e.g. by using L’Hopîtal’s rule.
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3. Now we consider the second derivative ∂2P
∂β∂γ

∣∣∣∣
θ0
. Similar to the first derivative,

we have ∂2P
∂β∂γ

∣∣∣∣
θ0
= A ∂2(eXt)

∂β∂γ

∣∣∣∣
θ0

A−1. There are now 3 types of terms to consider

when we apply the product rule twice to calculate ∂2(Xn)

∂β∂γ

∣∣∣∣
θ0
, when again X(θ0)

is a diagonal matrix D:

(a) terms where ∂
∂β
happens to an earlier factor than ∂

∂γ
. For example, ∂X

∂β
∂X
∂γ
.

(b) terms where ∂
∂β
happens to a later factor than ∂

∂γ
. For example, ∂X

∂γ
∂X
∂β
.

(c) terms where both ∂
∂β
and ∂

∂γ
happen to the same factor. For example ∂2X

∂β∂γ
.

The calculation in the third case is like the first derivative calculation shown
earlier: we just replace Nβ by Nβγ. The first two cases are symmetric, so we
only study the first. In this case ∂2(Xn)

∂β∂γ

∣∣∣∣
θ0

=
∑

06a6b6n−2 DaNβDb−aNγDn−2−b.
Thus ∂2(Xn)

∂β∂γ

∣∣∣∣∣∣
θ0


i j

=
∑

06a6b6n−2

∑
k

da
i (Nβ)ikdb−a

k (Nγ)k jdn−2−b
j =∑

k

(Nβ)ik(Nγ)k j

∑
06a6b6n−2

da
i db−a

k dn−2−b
j

If we let b′ = b − a, the inner sum becomes

sn
i jk =

∑
06a6b6n−2

da
i db−a

k dn−2−b
j =

∑
06a6n−2

da
i

∑
06b′6n−2−a

db′
k dn−2−a−b′

j

Then we have a sum over b′, which evaluates to
dn−1−a

j −dn−1−a
k

d j−dk
when d j , dk,

so we get sn
i jk =

∑
06a6n−2 da

i
dn−1−a

j −dn−1−a
k

d j−dk
. Now, if we let a = n − 1, then

dn−1−a
j − dn−1−a

k = 0, so we have

sn
i jk =

∑
06a6n−1

da
i

dn−1−a
j − dn−1−a

k

d j − dk
=

1

d j − dk

 n−1∑
a=0

da
i dn−1−a

j

 + 1

dk − d j

 n−1∑
a=0

da
i dn−1−a

k


By evaluating each of the sums, and adding the results together, we get (for
di, d j, and dk distinct)

sn
i jk =

dn
i

(di − d j)(di − dk)
+

dn
j

(d j − di)(d j − dk)
+

dn
k

(dk − d j)(dk − di)
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with the appropriate limiting values taken when two of them are equal. Thus
the sum over the first type of terms for the derivative

(
∂2(eDt)

∂β∂γ

∣∣∣∣
θ0

)
i j
is

∑
k

(Nβ)ik(Nγ)k jhi jk

where

hi jk =

(
edit

(di − d j)(di − dk)
+

ed jt

(d j − di)(d j − dk)
+

edkt

(dk − d j)(dk − di)

)
with appropriate limiting values taken in the cases when di = d j, di = dk, or
d j = dk.

�

Note: when we actually want to numerically calculate this, taking rounding errors
into account, we need to decide how close di and d j should be for us to treat them
as equal, and use the limiting form. To do this, we consider the errors caused by
rounding and by using the limiting form. The relative error caused by using the
limiting form is approximately di−d j

2
, since we can neglect terms after the second in

the Taylor series. Meanwhile the absolute rounding error induced when we use the
general formula is about the machine epsilon, which we will denote ε, that is, the
relative error caused by rounding off numbers in the machine, or ε |di|, whichever is
larger. This means that the relative error in the general formula is about O

(
(1+|di |)ε

di−d j

)
.

We should therefore use the formula for di = d j whenever (di − d j)
2 < ε(1 + |di|).

For details about how to compute these derivatives more efficiently, see Sec-
tion 3.2.

Appendix 2: Detailed Complexity Analysis

We calculate the complexity of the various steps in the algorithm. Recall the mean-
ings of all relevant variables:

n Number of rows (or columns) of the Q-matrix
v Number of internal nodes in the tree
b Number of branches in the tree (or total number of nodes)
h Height of the tree
p Number of non-branch-length parameters
S Number of sites
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1. The typical complexity of diagonalising a symmetric matrix (and we can
diagonalise the Q-matrix by first diagonalising the symmetric matrix R =
Π

1
2 QΠ−

1
2 ) is O(n3) (depending on the method used and the desired accuracy).

This only needs to be calculated once.

2. For most of the parametrisations that have been considered, differentiating the
Q-matrix with respect to a parameter is not expensive. However, to calculate
Nβ, we need to conjugate the derivative by A. This requires O(n3) operations.
However, this is only necessary once for each parameter, for a total complexity
O(pn3).

3. For each pair β, γ of Q-matrix parameters, calculating the matrices P(β, γ),
R(β, γ), S (β, γ), and T (β, γ), requires O(n3) operations. Therefore calcu-
lating these matrices for all pairs of Q-matrix parameters requires O(p2n3)
operations.

4. For each branch, multiplying a vector by eQt (expressed as a product of 3
matrices) requires O(n2) operations. To create the likelihood lists, we need to
do this for each branch, so we need O(bn2) operations for each site. Creating
the up lists also requires O(bn2) operations for each site.

5. For the derivatives of lists with respect to branch lengths, the recursion along
each branch takes O(n2) operations, and we need to do this for the derivatives
with respect to all lower branches, so the total number of times we need to
do this is the number of comparable pairs of branches. This is O(bh) (for
each branch, there are on average O(h) branches above that branch) so that
in total, computing the derivatives of the lists with respect to branch lengths
takes O(bhn2) operations.

6. Forming the cumulative lists for derivatives with respect to a parameter β
requires O(bn2) operations. Therefore in total, computing the lists for all pa-
rameters requires O(bpn2) operations.

7. To calculate each first derivative, we need to combine a pair of lists (a down
list and an up list for branch lengths, and a cumulative list for other parame-
ters), which takes O(n) operations. We need to do this for each parameter, so
it requires O(bn) operations for the branch lengths and O(pn) operations for
the other parameters.

8. For second derivatives with respect to branch lengths:
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(a) Calculating the second derivative with respect to a single branch length
requires calculating sT

N(D
2eDte)wN , which can be done in O(n) opera-

tions, and has to be calculated for each branch and each site.
(b) For a pair of branches with one above another, e < e′, with N the bot-

tom node of e′, computing (se′
N)

T (DeDte)wN requires O(n) operations.
Therefore, calculating these terms for all pairs of branches at a given
site requires O(bhn) operations.

(c) For a pair of branches e//e′, the second derivative can be calculated in
O(n) operations. This needs to be done for each pair of branches and
each site, so for each site O(b2n) operations are required.

9. For each pair of parameters β and γ:

(a) Calculating the sum over e′ of cases where β and γ act on comparable
branches e′ < e requires O(n) operations. These sums then have to be
summed over all branches e whose bottom node is not a leaf. Having
to do this for all pairs of parameters therefore requires O(vp2n + vpn2)
operations for each site.

(b) Calculating the sum of cases where β and γ act on branches e//e′ re-
quires O(n) operations at each internal node. (Actually, slightly more
are needed in the case of a multifurcating tree, though for a multifur-
cating tree, there are fewer internal nodes). When this is done for each
internal node and each pair of parameters , it gives a total of O(vp2n)
operations for each site.

(c) We calculate the effect to the second derivative where β and γ act on the
same branch as the following sum:

∑
i, j,N

sN,iwN, j
(Nβγ)i j(edite − ed jte)

di − d j
+

∑
i, j

∑
N

sN,iwN, jedit

 P(β, γ)i j+∑
N

sN,iwN, jed jt

 R(β, γ)i j+

∑
N

sN,iwN, jtedit

 S (β, γ)i j+

∑
N

sN,iwN, jted jt

 T (β, γ)i j

+∑
i∼ j

∑
N

sN,iwN, j(t2 − t)ed jt

 T (β, γ)i j

 + (tβN)
T eDtψ

γ
N + (tγN)

T eDtψ
β
N

over all edges of the tree. The terms
∑

e siw jedit,
∑

e siw jed jt,
∑

e siw jtedit,
and

∑
e siw jted jt, each takeO(b) operations to compute for all i and j, and
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we need to compute a total of O(n2) such terms. Therefore, computing
all these terms requiresO(bn2) operations for each site. Combining them
with the matrices P(β, γ), etc. requires O(n2) operations, and has to be
done for each pair of parameters, leading to a total of O(p2n2) opera-
tions. Since the matrices P(β, γ), etc. are the same for all sites, this term
does not need to be repeated for each site. The terms (t(β)N)

T eDtψ(γ)N

and (t(γ)N)
T eDtψ(β)N take O(n) operations for each branch and each

pair of parameters, and so require O(bp2n) operations for each site.

10. For the derivative with respect to one branch length and one Q-matrix param-
eter:

(a) Computing (cN(β))
T vN(e) for each parameter and each branch, requires

a total of O(hbpn) operations on each site.
(b) Computing

∑
N>e(de

N)
T vN(β) for a parameter β and a branch e, requires

O(hn) operations. Thus a total of O(bhpn) operations are needed on
each site.

(c) The case where the branch and the parameter are on branches e//e′ is
calculated as the sum∑

2≤i≤k

πT (δe
N1
#δN2

# · · · #γNi(β)# · · · #δNk#vN)

which requires O(nh) operations for each parameter and each branch,
on each site. Thus, a total of O(hbpn) operations on each site.

(d) The casewhere the parameter is differentiated on the branch is calculated
as sT

N(
∂(DeDte )

∂βe
)T wN , which requires O(n2) operations for each parameter

and each branch, and thus a total of O(bpn2) operations on each site.
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