Robert Milson

Research Summary


SUMMARY
I am interested in methods of differential geometry, Lie theory, representation theory, and combinatorics.
Current research projects include:
  • Lorentzian geometry, with applications to relativity,
  • quasi-exact solvability
  • geometry of reflection groups

PUBLICATIONS
23. VSI1 space-times and the ε-property, N. Pelavas, A. Coley, R. Milson, V. Pravda, A. Pravdová,
J. Math. Phys. 46 (2005), 063501-063506.
22. Quasi-exact solvability and the direct approach to invariant subspaces, D. Gómez-Ullate, N. Kamran, R. Milson,
J. Phys. A 38 (2005), 2005-2019.
21. Alignment and algebraically special tensors in Lorentzian geometry, R. Milson, A. Coley, V. Pravda, A. Pravdová,
Int. J. Geom. Methods Mod. Phys. 2 (2005), 41-61.
20. Supersymmetry and algebraic Darboux transformations, D. Gómez-Ullate, N. Kamran, R. Milson,
J. Phys. A 37 (2004), 10065-10078.
19. Vanishing scalar invariant spacetimes in higher dimensions, A. Coley, R. Milson, V. Pravda, A. Pravdová,
Class. Quantum Grav. 21 (2004), 2873-2897
18. Killing tensors as irreducible representations, , R. McLenaghan, R. Milson, R. Smirnov
C. R. Acad. Sci. Paris, 339 (2004), 621-624.
17. Reflection quotients in Riemannian Geometry. A Geometric Converse to Chevalley's Theorem,
Proc. Amer. Math. Soc. 132 (2004), 2825-2831.
16. The Darboux transformation and algebraic deformations of shape-invariant potentials, D. Gómez-Ullate, N. Kamran, R. Milson,
J. Phys. A 37 (2004), 1789-1804.
15. Bianchi identities in higher dimensions, V. Pravda, A. Pravdová, A. Coley, R. Milson,
Class. Quantum Grav. 21 (2004), 2873-2897
14. Classification of the Weyl tensor in higher dimensions, A. Coley, R. Milson, V. Pravda, A. Pravdová,
Class. Quantum Grav. 21 (2004), L35-L41.
13. Generalizations of pp-wave spacetimes in higher dimensions, A. Coley, R. Milson, N. Pelavas, V. Pravda, A. Pravdová, R. Zalaletdinov
Phys. Rev. D., 67 (2003), 104020
12. All spacetimes with vanishing curvature invariants, A. Pravdova, V. Pravda, A. Coley, R. Milson
Class. Quantum Grav., 19 (2002), 6213-6236.
11. An overview of Lie's Line-Sphere Correspondence
in The geometrical study of differential equations, Contemp. Math., 285, AMS, 2001
10. Spectral residues of second-order differential equations: a new method for summation identities and inversion formulas,
Studies in Applied Mathematics   107, (2001), 337-366.
9. Combinatorial aspects of the Darboux transformation.
in Bäcklund and Darboux transformations. The geometry of solitons, CRM Proceedings & Lecture Notes, 29. AMS, 2001.
8. Invariant modules and the reduction of nonlinear field equations to dynamical systems, N. Kamran, R. Milson and P. Olver,
Advances in Mathematics   156 (2000),   286-319.
7. Composition sum identities related to the distribution of coordinate values in a discrete simplex.
Electronic Journal of Combinatorics,   7 (2000), R20.
6. Algebraic exact solvability of trigonometric-type hamiltonians associated to root systems, N. Kamran, R. Milson,
J. Math. Phys. 40 (1999), 5004-5013.
5. Quantization of cohomology in semi-simple Lie algebras, R. Milson, D. Richter.
J. Lie Theory, 8 (1998), 401-414.
4. On the Liouville transformation and exactly-solvable Schrödinger equations.
Internat. J. Theoret. Phys., 37 (1998), 1735-1752.
3. Imprimitively generated Lie-algebraic Hamiltonians and separation of variables.
Canad. J. Math., 50 (1998), 1298-1322.
2. On the construction of Q.E.S. operators on homogeneous spaces.
J. Math. Phys., 36 (1995), 6004-6027.
1. Representations of finite-dimensional Lie algebras by first-order differential operators. Some local results in the transitive case.
J. London Math. Soc., 52 (1995), 285-302.


Home     Courses     Vita