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Abstract
The categoryRel of sets and relations has two natural traced monoidal strest in(Rel, +, Tr), the tensor is
given by disjoint union, and ifRel, x, Tr") by products of sets. Already in 1976, predating the definitbtraced
monoidal categories by 20 years, Bainbridge has shown hawottel flowcharts and networks in these two respective
settings. Bainbridge has also pointed out that one can nmowedne setting to the other via the power set operation.
However, Bainbridge’s power operation is not functoriaid an this paper we show that there is no traced monoidal
embedding of(Rel, +, Tr) into (Rel, x, Tr’) whose object part is given by the power set operation. On thero
hand, we show that there is such an embedding whose obj&ds garen by the power-multiset operation.

I ntroduction

Predating the definition of traced monoidal categories y2®years, Bainbridge [1] has pointed out in 1976 that there
exist (in today’s terminology) two natural traced monoistalictures on the categdRel of sets and relations. The first
one is(Rel, +, Tr), where the tensor product is given by disjoint union of s€te second one igRel, x, Tr'), where
tensor is given by products of sets. Bainbridge used thesga@des to give a compositional semantics to flowcharts
and networks, respectively, and he pointed out a dualitwéen the two situations: the power set operation takes the
first category to the second, and it gives rise to a homset-@ois connection. Bainbridge’s power operation maps
a setX to the power sePX, and a relatiom? : X — Y to the relationPR : PX — PY given bya PR § iff for

all x € o, xRy impliesy € 3. Remarkably, this operation preserves not only compaséind tensor, but also trace.
However, it does not preserve identities, and it is theeefmt a functor.

One may now ask whether there is some variant of Bainbridgeistruction that yields an actual functor of traced
monoidal categories. More precisely: is there a traced ridahembedding ofRel, +, Tr) into (Rel, x, Tr') whose
object part is given by power sets? The answer, as we shalikssee. In fact, there is no traced monoidal embedding
between these categories that maps finite sets to finite@atthe other hand, we will show that such an embedding
exists whose object part is given by the power-multiset atpan.

Thanks to Thomas Hildebrandt for pointing out a mistake @nftrst draft of this manuscript.

An embedding of (Rel, +, Tr) into (Rel, x, Tr)

Let Rel be the category of sets and relations, andRids, be the full subcategory of finite sets. ®al, we consider
two traced monoidal structuré®el, +, Tr) and (Rel, x, Tr'). For the first one;+ is disjoint union of sets, and for
R:X+7Z —>Y+Z TrzR: X — Y is given byz(Trz R)y iff there existzy,...,z, € Z, withn > 0,
such thattRz1 R ... Rz, Ry. The second traced monoidal structure is givenxbgs the product of sets, and for
R:XxZ—=YxZ TyR: X — Y is given byz(Tr, R)y iff there existsz € Z such that(x, z)R(y, z). Both
these traced monoidal structures restridRtdy,. The goal of this section is to prove:

*This research was done while the author was visiting BRIGSiBResearch in Computer Science, Centre of the DanisbridétResearch
Foundation.



Theorem 1 There exists an embeddidg: (Rel, +, Tr) — (Rel, x, Tr') of traced monoidal categories.

Let N = {0,1,...} be the set of natural numbers with addition. For anyXefet [X — NJs, denote the set of
finitely supportedX -tuples of natural numbers, i.e. the setXftuples(a,).cx such that for all but finitely many
z € X, a, = 0 (notice that these tuples could be regarded as finite misl}isé (a; )., (by)y, and(esy ), are such
tuples, then we write

| b, by
Ay Cry Cxy’
Ayr | Cgry 0 Exly’

as a suggestive notation for
Gy = Zyey eyy forallz € X and
by =3 cxeay forallyey.

We use this notation for infinite as well as for finite indexssethich is justified since the tuples are finitely supported.

Lemma2 There existe., )., satisfying the above equations if and only if, _  a, = ZyEY by.

Proof: The “only if” direction is trivial, the other direction fadws by induction oy a,. O
We now construct a functaF' : Rel — R as follows. For any seK, let FX = [X — NlJsin. On morphisms

R: X —Y,wedefineFR : FX — FY to be the relation given bft.), FR (b,),, if and only if there existe,, )y
such that,, # 0 impliesz Ry for all z,y, and such that

| by - by
am emy . e emy/
awl ew/y ... em/y/

It is easy to see that iR : X — X is the identity relation, thelfa,), FR (b.), iff for all z, a, = b,. Thus,
F preserves identities. To see thatpreserves compositidnconsiderk : X — Y andS : Y — Z. Suppose
(az)e FR (by)y FS (c,), via

| by - by | Cy e Cyr
Qr | €xy Exy’ by fyz T fyz’
and . .
awl ew/y LI ew/y/ by/ fy’z LI fylzl

such that,, # 0 implieszRy, andf,, # 0 impliesySz. By Lemma 2, for every € Y there iS(gy- ). such that

| fye o fysr
Cxy | Gayz - Gayz’
ew’y gm’yz e gw’yz’

Leth,z = Zy gayz- Thenforallz € X,

Ay = § Exy = E Jryz = § hmza
Yy Y,z z

1Since in any traced monoidal categofy,g = Tr((f ® g); ¢), it would suffice to check this for the case where= c.




and similarlyc, = > h,. forall z € Z. Thus

. o e
Qg h;vz T hmz’
Qg hm/z ce hm’z’

Moreover, ifh,.. # 0 then there existg such thay,,. # 0, hencee,, # 0 andf,. # 0, hencerRy andySz, hence
xRSz. Thus,(a;), F(RS) (c.).. This shows thatF'R)(F'S) C F(RS).
Conversely, assume that, ), F(RS) (c.). via

| Cy e Cyr
Ay hmz te hzz’
[e2% hm/z cee hm/z/

such thath,. # 0 implies zRSz. For each paifz, z) such thatzt RSz, choose a particulay,.. € Y such that
xRy,.Sz. Define

_ hzz if Y = Yxzs
o 0 else,

by - Z Gryz,
T,z
emy = Z gzyza
z
fyz - Z Gryz-
T

Then
Zgzyz - hzZa
Yy
Doy = D Gey=by
x T,z
Doy = D Gz =) hes = 0a,
Y Y,z z
Dolus = DGy =) hes =,
) x,Yy z
Dofve = D= by
z T,z
thus
(b o by oo e
Qg | €xy " Exyl by fyz fyz’
and . .
awl ew,y “e em,y, by/ fy’z “ e fy/Zl

Moreover, ife,, # 0, then for some:, g,,. # 0, hencey = y,., hencexRy. Similarly, if f,. # 0, thenySz. It
follows that(a; ). FR (by), F'S (c.)., and thusF'(RS) C (FR)(F'S). We have shown thdf is a functor.



Next, we show thaF preserves the symmetric monoidal structure. On objédtX,+Y) = F(X) x F(Y) viathe
identification of(a;);ex+z With ((az)zex, (a2).cz). Moreover,F(0) = 1. For morphisms, considé® : X — Y
andS:Z - W.ThenR+S: X +Z =Y +W. Assume((ay)y, (¢.)z) F(R+S) ((by)y, (dw)w) Via

by - by, dw . dw’
Ay Exy te Exy’ Exw e Crw’
Qg | Exry = Cyxry’  Exlw Cx/w!
Cz €zy e €2y’ €zw e €zw’
Cyr Czly Czly’  Exlw €z’

wheree;; # 0 impliesi(R + S)j. Thus, in particulare,,, = 0 for all z € X andw € W, ande,. = 0 for all
y € Y andz € Z. Hence(a,), FR (b,), and(c,), FR (dw)w. The converse is also trivial, and thus we have
F(R+ S)=FR x FS. Last,F preserves the canonical isomorphisms for associatiuity, and symmetry.

We will now show thatF’ preserves trace. ConsidBr: X + Z — Y + Zand letQ = TrzR : X — Y. First,

suppose thata, ), F'Q (by), Via

| by o by
Ay | €xy "' Exy
Ayr | €xry =0 Exly’

wheree,,, # 0 implieszQy. Now choose a set of word$ C X x Z* x Y such that
1. whenever:z; ... z,y € A, thenzRz1R. .. Rz, Ry, and

2. for each paifz, y) with zQy, there is exactly one worgk; . .. z,y € A.

If w andw’ are words, then we say is a subword ofy’, in symbolsw < w’, if there exist words: andv such that
uwv = w'. In the following, we denote words ii* by €. Fori € X + Z andj € Y + Z, define

fio = D Aewy | ijaaty € A},
c, = Z{emy | z<aly € A}.

Notice that these sums are finite, because only finitely neapy4 0. Then

Z ,fzj - Z Cry = Z emyzzezy:aza

jeY+2 y | z€ycA y | =Qy Y
D fuo= X ew= D ew=) e =by
ieX+z o | ztyeA e | 2Qy =
S ke Y e
JEY+Z zy | zdz€y€eA
> fe = D em=ca
i€EX+Z zy | zdz€y€eA
Thus
by e by, CZ P CZ/
Ay fzy ,fzy’ fzz fmz’
(7 fz’y fm/y’ fm/z fm/z/
Cz fzy fzy’ fzz fzz’
(&% fz’y fz’y’ fae oo fuw
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Moreover, if f;; # 0, then there existsly € A with ij < 2y, henceiRj by definition of A. Thus, it follows that
((az)z, (¢2)z) FR ((by)y, (cz)-), and thereforéa, ), Trx,(FR) (by),. This showsF (TrzR) C Trx,(FR).

For the converse, assume tiat,), Trx,(FR) (b,), holds. By definition of Tt, there existgc,). such that
((ag)z, (€2)2) FR ((by)y, (c2)z). Let(fij)iex+z jey+z be suchthaf;; # 0 impliesiR;j and

b, - by Cr
Qg .fzy fzy’ .fzz fmz/
(% fm'y fm/y’ farz farzr
Cz fzy .fzy’ fzz fzz’
Cyr ley ley/ fz/z fz/z/

Again, letQ = Trz R. We will show that(a, ). F'Q (b,), by induction on)__ c.. We distinguish three cases:

e Case 1}  c. =0.Thenforalli,j, 2, f;- = 0andf.; = 0, hence

| by by
Qg fmy fmy’
Qg fm’y fm’y’

andf,, # 0 impliesz Ry implieszQy, hence we are done.

., zn € Zsuchthatf,, .., ..., fz 12,5 f2,2, # 0. Define

e Case 2: There exists > 2 and distinctzq, . .

o o— c,—1 ifz€z,...,2n,
z Cs else,
. fij—1 ifijazi... 221,
& fij else.
Then
/ /
by by/ C, CZ/
a 7 7 7 7
x zy zy’ Tz zz’
/ / / /
(2% z'y z'y’ P 2!
/ / / / /
Cz zy zy’ zz zz'
/ / / / /
C, 2y 2y’ ™ fz’z’

holds andf;; # 0 stillimpliesiRj, moreoved__ ¢, < __ c.. By induction hypothesis, we gét. ). F'Q (by),-

e Case 3: Since we are not in Case 1, we can assume that thigre i8 such that;, # 0. Inductively suppose
that we are given, € Z such that;, # 0, then there ig,; € X + Z such thatf;, . ;, # 0, and thus also
¢i,., 7 0. Inthis manner, we construct a sequenge, iz, .... Since we are not in Case 2, this sequence
is non-repeating, and since only finitely manyare different fronD, the sequence must eventually stop with
somei;, € X. Proceeding froni, in the other direction, we can construct a similar sequeswéhat in the end



we geta patitzo ...z, g With fig, faozrs .-+, f2.9 # 0. Define

;foag—1 ifz=2,
T ay else,
Y o— by—1 ify=4g,
v by else,

o c,—1 ifz€z,...,2n,
z C else,

£ {fl-j—1 if ij <920 .. 200,

G fi else.
Then
/ !/ / /
by AR by/ CZ AR CZ/
/ !/ / / /
Qg zy zy’ zz 7 xz!
! ! ! ! !
Q.. 'y z'y’ x'z 2!
/ ! ! i i
Cz zy 77 2y’ zz 2z’
/ U ! ! !
C, 2y 2y’ P fz’z’
andf;; # 0 stillimpliesiRj; moreover) . ¢, < ). c.. By induction hypothesis, we gét,). F'Q (b,,), via
some
/ /
, | b/y . liy/
Ay | €py o €gy
CL/I/ 6;/1} s ewlyl

wheree’zy # 0 implieszQy. Now let

_f e, +1 ifz=2andy =y,
A else
Yy :
Then
| by - by
Qg emy R emy/
Qg | €xry = Exly’

and ife;, # 0, then eithere,, # 0, in which caserQy, or elsex = & andy = g. But, by construction,
2Rz R... Rz, Ry, and thuseQy. Thus(a,). FQ (by),, which shows that Tr,(FR) C F(TrzR), thereby
finishing the proof of Theorem 1. a

Thereisno embedding of (R€lfin, +, Tr) into (Relfin, x, Tr')

In this section, we will show that Bainbridge’s construaticannot be made into a functor frofRel, +, Tr) into
(Rel, x, Tr'). More generally:

Theorem 3 There exists no embeddiy: (Relsin, +, Tr) — (Rélsin, X, Tr') of traced monoidal categories.

Notice that this theorem implies that there is no embeddingRel, +, Tr) into (Rel, x, Tr’) which is given by the
power set operation on objects.



For any finite sefV, let Fy : (Rélsin, +) — (Relsin, x) be the symmetric monoidal functor that is given on objects
by Fy X = N and on morphisms bt ) .e x Fn R (by)ycy iff for all z,y, xRy impliesa, = b,. One checks that
the functorFy preserves trace if and only ¥ # (). However,Fy is never an embedding.

For an arbitrary symmetric monoidal functér : (Relsin, +) — (Relsin, ), we will show that if F preserves
trace, then it is naturally isomorphic #6y for someN. In particular, there is no traced monoidal embeddihg
(Relfin, =+, Tr) — (Relﬁn, ><,Tr’).

Given such a functoF’, let N = F(1). Notice that any objeck in Rel, is of the formX =1+ 1+ ...+ 1,
andthusFX = N x N x ... x N = N¥. For any two objectsX andY’, letVxy: NX — NY = F(T xy) be the
image of the full relation xy : X — Y, i.e. of the relationl xy = X x Y.

Notice thatF' is completely determined (up to natural isomorphism)Ndyand the relationsy xy, because any
morphismR : X — Y in Rel can be written as

x=Y 1= Yy ¥ )Xoy Rov, S 1%2Xm21:}/,
reX reX reX,yey reX,yeY yeyY yey

where
idy if xRy,

R,y:1—1=
i {1@0@1 else.

Thus,F' R can be computed frony xy via

NX:HN [1.Viy HNY% H NnmyF(Rzy) H NgHNX I1,Vx1 HN:K

recX reX zeX,yeyY zeX,yeY yey yey
where
id if xRy,
F(Ryy): N = N = Yio Vo
N —1— N else.

Let e be a tag such that ¢ N. We extend the relatior xy t0 Vxy C (N + {e})¥ x (N + {e})Y by setting
(az)z Vixy (by), if and only if there exista;, ). and(b;, ), such tha(a,). Vxvy (b;,), and

a,=a; ifa;#e,
a; EVo Ifaz=o,
b, =b, ifb, #e,
b, € Vig if by =,

| by by
Ay Cxy Exy’
Ayr | €gry =0 Exly’

as an abbreviation for .
a; Viy (esy)y foralz e X and

(ezy)z V;(l by for all yey,

Lemma4 (az)s FR (by), if and only if there exist a tuplée,y )zc x,ycv Of elements oN + {e}, such thak,, # e
iff xRy, and such that

| by by
Ay Cry Cxy’
az’ ez/y ez/y/



Proof: We already know thaa,), F'R (by), if and only if
(aa)a ([T Vivi [T F(Ray): [T Vx1) (By)y:
x zy Yy

which is the case if and only if there exigt,, ).cx yev and(el,, )zcx, yey from N such that

az Viv (€)y forall x € X,
€y = €y for all z Ry,
e;y € Vio ande;’y €V forallz Ry,
(ehy)e Vx1 by forally e Y.
Now lettinge,, = e, = e, if xRy, ande,, = e if = R y, the claim follows. d

Lemma5 The following statements, along with their duals, are prtips of the relationsy xv:
1. Forall (a;), and all permutation® : X — X, onehad Vix (az)s iff b Vix (agz)s-

2. Ife € Vo, thena Vi x41 (b1,...,bx,e) impliesa Vi x (b1,...,bx). Conversely, whenever Vv x
(b1, ...,bx), then there exists an € V1o such thate V1 x+1 (b1,...,bx,e). (Actually,e depends only on,
but we don’t need this fact).

3. Foreveryb € N, and evenn > 1, there existgaq, . . ., a,) such thab Vi, (a1,...,an) Va1 b.
4. Foreveryb € N and everyn > 1, there exista € N such that(b,...,b) V1 a Vin (b,...,0).
5. If Vo1# N, then there exist, b € N such thata V12 (b,a) andb & Vo1.

Proof:

1. Consider the following two diagrams. The left diagram camtes in(Relqin, +). By applyingF, one gets the
right diagram in(Réelfn, x):

Tix Vix

1 —> N — NX
=

Tk{ l¢ VX\« J«M

X N¥X.

But sinceg is given in terms of the symmetric monoidal structufie; behaves as expected, which implies the
claim.

2. Again, commutativity of the left diagram implies commtixtily of the right one:

T1,x41 Vi,x+1

1—=X+1 N——NXxN
Tix id4+T10 = - lidXVm
1X
X N¥X,
Thus,a V1,x (b1,...,bx) iff there existse € V1 with a V1 x4+1 (b1,...,bx,e), which was the claim.

3. Again, we transfer a diagram frofRelsi,, +) to (Rélfin, x) alongF:

1 Tln n N Vin Nn
\ l—ﬂﬂ = \ lvnl
id id
1 N.

The claim follows.



4. Supposé € N andn > 1 are given. By (3), there i§&, . .., a,,) such thab V1, (a1,...,a,) Va1 b. Then

b b - b b
blar az -+ an_1 Gy
bla, a1 -+ Gn—2 ap_1
b as ag - a1 ag
blay a3z --- an ai

and thugb,...,b) Vun (b,...,b) by Lemma 4. But

Vn
n Nt s N

1
=
Tin N
Tkl ! m\lm
n

N™,
and hence there exisise N such tha{b,...,b) Vn1 @ Vin (b, ..., D).

5. Suppose there is some& N with ¢ € V. Foreach > 1, use (4) to choosé, € N suchthate,...,¢) Va1
dn, Vin (c,...,c). SinceN is finite, there must be, m > 1 such thatl,, = d,,.,,. Now leta = d,, = dy,41m,
and letb = d,,,. Then

a Vintm (¢,.7,¢,¢,™,¢) (Vn1 X Vm1) (a,b).

But we have
T1,nd4m Vintm
l——n+m N—N"x N™
Tni+Tm1 = Vn1XVmi
Ti2 Viz
1+1 N x N,

and hence it follows that V12 (a,b). Moreover, supposk € V. Becausé Vi, (¢,.™.,¢), it follows that
(¢, ™., ¢c) € Vom. But

T LT
TOm - 0 o1t-.-+To1 m
- Yom = 1 Vo1 X...XVo1 Nm,
hencec € Vg1, a contradiction. O

Up to this point, we have derived properties of an arbitrgmsetric monoidal functoF : (Rélin, +) — (Rélfin, X).
Notice that the only time we have used the finitenes®olvas in the last part of Lemma 5. Now, assume that
preserves trace. We will show thety; = N. By way of contradiction, assume tht; # N. Then, by Lemma 5(5),
there existu, b € N with a V12 (b,a) andb ¢ V1. Moreover, we can easily findd € N with (¢,d) Va1 ¢, for
instance by Lemma 5(2). Now I&f = {z},Y = {y}, andZ = {z1, 22}. Consider the relatio® : X + Z - Y + Z
given by the matrix

0 1
1 0
0 1
d

i.e., xRz, 22 R29, 21 Rz1, andzy Ry. Froma V12 (b, a) and(c, d) V21 ¢, with Lemma 5(2), it follows that




and thus, by Lemma4d, a, c) F R(b, a, c). By definition of the trace ofRé€lfin, x, Tr'), it follows thatd Trz , (F R) b.
Since F' preserves trace, we must hatvd'(Trz R) b. But notice that Tt R : X — Y is the empty relation. From
d F(0) b, it follows by Lemma 4 thab € Vv, a contradiction. Therefore, it must have been the cas&that N.

By the dual argument, we also have,= N. Now we can apply Lemma 5(2) to arbitraeye N, and by
repeatedly doing so, it follows that for atl and (b,),, if a Viy (by),, thena = b, for all y € Y. (Note that

Vi1=idy). Conversely, if(b, ), is a constant tuple, then by Lemma 5(4), there existsth a Vv (by),. Thus
aViy (by), ifandonlyif a=b,forallyey.
Similarly, the dual statement holds, and by writifigry =V x1V1y, we get
(az)e Vxv (by)y if and only if a; =byforallz € X,y eY.
From here, it is easily seen thatis naturally isomorphic to the functdry defined at the beginning of this section
(recall thatF is uniquely determined bgv and the relation¥ xv). This concludes the proof of Theorem 3. [
Additional challenges

Notice that the proof of Theorem 3 only uses the trace of omicpdar matrix, namely

Can one extract from this proof a universal sentence (in tedipates of traced monoidal categories and equality)
which holds in(Rélsin, x, Tr') but not in (Relsy, +, Tr)? Such a (possibly infinite) sentence must exist by abstract
algebraic nonsense. But a nice such sentence would yielskigbypmore elegant proof of the non-embedding theorem.
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