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Abstract

Dagger compact closed categories were recently introduced by Abramsky and Co-
ecke, under the name “strongly compact closed categories”, as an axiomatic frame-
work for quantum mechanics. We present a graphical language for dagger compact
closed categories, and sketch a proof of its completeness for equational reasoning.
We give a general construction, the CPM construction, which associates to each
dagger compact closed category its “category of completely positive maps”, and
we show that the resulting category is again dagger compact closed. We apply
these ideas to Abramsky and Coecke’s interpretation of quantum protocols, and to
D’Hondt and Panangaden’s predicate transformer semantics.

Key words: Categorical model, quantum computing, dagger
categories, CPM construction.

1 Introduction

In the last few years, there have been several proposals for axiomatic semantics
of quantum programming languages and/or protocols. In [9], I proposed the
notion of an “elementary quantum flow chart category” as an abstraction of
the category of superoperators. In such a category, one can give a denotational
interpretation of first-order quantum programming languages with classical
control and finite classical and quantum data types.

At about the same time, Abramsky and Coecke introduced their notion of
a “strongly compact closed category” (which will be called “dagger compact
closed category” in this paper). This axiomatic framework captures enough of
the properties of the category of finite-dimensional Hilbert spaces to be able
to express basic quantum-mechanical concepts such as unitary maps, scalars,
projectors, inner products etc.
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The respective axiomatics of [9] and [1] are at the outset quite different: the
former attempts to capture von Neumann’s formulation of quantum mechanics
in terms of mixed states, density matrices, and completely positive maps, while
the latter formalizes the Hilbert space point of view centered on pure states,
unitary maps, and projectors.

The aim of this paper is to demonstrate that, despite these obvious differ-
ences, the two approaches actually have a lot in common. We show that the
category of completely positive maps considered in [9] is actually a biproduct
dagger compact closed category. We further introduce a general construction,
called the CPM construction, that associates to any dagger compact closed
category C its “category of completely positive maps” CPM(C). In this way,
we obtain a canonical and very general way of passing from a “Hilbert-style”
to a “von Neumann-style” setting.

As an application of these ideas, we discuss Abramsky and Coecke’s in-
terpretation of quantum protocols. Abramsky and Coecke have argued that
biproducts can be used to model classical information flow in their categori-
cal setting. We show that the proper place for such an interpretation is not
the category of Hilbert spaces, but its derived category of completely positive
maps.

As another application of the dagger structure on the categories of com-
pletely positive maps, we also we also briefly discuss D’Hondt and Panan-
gaden’s predicate transformer semantics [4].

An important tool in reasoning about many variants of monoidal categories
is the use of graphical languages [5]. Here, we describe a graphical language
for dagger compact closed categories. A similar language has already been
used, in a more informal manner, in the papers of Abramsky and Coecke. We
go into some detail about this language, and sketch a proof of its completeness
for equational reasoning in dagger compact closed categories.

2 Dagger compact closed categories

Dagger compact closed categories were introduced, under the name “strongly
compact closed categories”, by Abramsky and Coecke in [1]. They extend
compact closed categories [6] with a notion of adjoint of a morphism (here the
word “adjoint” is used in the sense of linear algebra, not of category theory).
Dagger compact closed categories axiomatize many of the structural properties
of the category of finite dimensional Hilbert spaces, and therefore they appear
to form a suitable framework for axiomatizing quantum mechanics.

2.1 Compact closed categories

Recall that a symmetric monoidal category is a category C together with
a bifunctor ⊗, a distinguished object I, and natural isomorphisms αA,B,C :
(A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), λA : A → I ⊗ A, and σA,B : A ⊗ B → B ⊗ A,
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subject to standard coherence conditions [7]. As usual, we also write ρA =
σI,A ◦ λA : A → A ⊗ I.

A compact closed category is a symmetric monoidal category where each
object A is assigned a dual object A∗, together with a unit map ηA : I → A∗⊗A

and a counit map εA : A ⊗ A∗ → I, such that λ−1
A ◦ (εA ⊗ A) ◦ α−1

A,A∗,A ◦ (A ⊗

ηA) ◦ ρA = idA and ρ−1
A∗ ◦ (A∗ ⊗ εA) ◦ αA∗,A,A∗ ◦ (ηA ⊗ A∗) ◦ λA = idA∗.

Remark 2.1 In any compact closed category, the operation (−)∗ extends to
a contravariant functor by mapping f : A → B to f ∗ : B∗ → A∗, defined by
ρ−1

A∗ ◦ (A∗ ⊗ εB) ◦ (A∗ ⊗ f ⊗ B∗) ◦ (ηA ⊗ B∗) ◦ λB∗ . This functor preserves the
symmetric monoidal structure, and possesses a natural isomorphism A∗∗ ∼= A.

2.2 Dagger categories

Definition 2.2 (Dagger category) A dagger category is a category C to-
gether with an involutive, identity-on-objects, contravariant functor † : C →
C.

Concretely, this means that to every morphism f : A → B one associates
a morphism f † : B → A, called the adjoint of f , such that for all f : A → B

and g : B → C:

id†
A = idA : A → A,

(g ◦ f)† = f † ◦ g† : C → A,

f †† = f : A → B,

(1)

Definition 2.3 (Unitary map, self-adjoint map) In a dagger category, a
morphism f : A → B is called unitary if it is an isomorphism and f−1 = f †.
A morphism f : A → A is called self-adjoint or hermitian if f = f †.

2.3 Dagger symmetric monoidal categories

Definition 2.4 (Dagger symmetric monoidal category) A dagger sym-
metric monoidal category is a symmetric monoidal category C with a dagger
structure, such that the contravariant functor † : C → C coherently preserves
the symmetric monoidal structure.

Concretely, the requirement that † “coherently preserves the symmetric
monoidal structure” means the following, for all f : A → B and g : C → D:

(f ⊗ g)† = f † ⊗ g† : B ⊗ D → A ⊗ C,

α
†
A,B,C = α−1

A,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C,

λ
†
A = λ−1

A : I ⊗ A → A,

σ
†
A,B = σ−1

A,B : B ⊗ A → A ⊗ B.

(2)
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Remark 2.5 Equivalently, the requirement that † preserves the symmetric
monoidal structure “coherently” means that the two natural isomorphisms
A† ⊗ B† ∼= (A ⊗ B)† coincide: namely, the one coming from the monoidal
functor, and the other one coming from the fact that † is an identity-on-
objects functor:

A† ⊗ B†

id
∼=

A ⊗ B id
(A ⊗ B)†

Since the vertical and horizontal morphisms are in fact identities, coherence in
this case amounts to the requirement that † preserves the symmetric monoidal
structure “on the nose”, rather than up to isomorphism.

2.4 Dagger compact closed categories

Definition 2.6 (Dagger compact closed category [1]) A dagger compact
closed category is a dagger symmetric monoidal category that is also compact
closed, and such that the following diagram commutes for all A:

I
ε
†
A

ηA

A ⊗ A∗

σA,A∗

A∗ ⊗ A

(3)

Remark 2.7 Abramsky and Coecke coined the term “strongly compact closed
category” for a dagger compact closed category. However, a dagger structure
can be added to almost any type of category, and so it is useful to have a ter-
minology that can be extended to these cases. Since it would sound silly, for
instance, to speak of a “strong category”, we propose the adjective “dagger”
as a more distinctive alternative.

Remark 2.8 In any dagger compact closed category, we have f ∗† = f †∗. This
is a consequence of equation (3). The converse is not true, i.e., a compact
closed dagger category in which f ∗† = f †∗ is not necessarily dagger compact
closed. To construct a counterexample, take a dagger compact closed category
C in which there is some invertible, but not unitary, scalar φ : I → I (for
example, the category of finite dimensional Hilbert spaces, with φ(x) = 2x).
Define a new compact closed structure on C by letting η ′

A = ηA ◦ φ and
ε′A = φ−1 ◦ εA. In the modified compact closed structure, the definition of f ∗ is
unchanged and thus f ∗† = f †∗ still holds. However, equation (3) is no longer
satisfied.

Definition 2.9 (Lower-star operation) Given f : A → B in a dagger
compact closed category, we define f∗ : A∗ → B∗ by f∗ = f ∗† = f †∗. This
assignment defines a covariant functor.
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2.5 Biproducts

Recall the definitions of a zero object and biproducts. An object is called a
zero object if it is initial and terminal. If 0 is a zero object, then there is a
distinguished map A → 0 → B between any two objects, denoted 0A,B. If
A1 and A2 are objects, their biproduct is an object A1 ⊕ A2, together with
morphisms qi : Ai → A1 ⊕ A2 and pi : A1 ⊕ A2 → Ai, for i = 1, 2, such that
the pair p1, p2 forms a product cone, the pair q1, q2 forms a coproduct cone,
and pi ◦ qj = δij. Here δii = idAi

and δij = 0Aj ,Ai
when i 6= j. We say that C

has finite biproducts if it has a zero object 0 and a biproduct for any pair of
objects.

Recall that a category C is said to be enriched in commutative monoids if
each hom-set is equipped with an associative, commutative addition operation
with unit 0, such that composition is linear: (f + g) ◦ h = f ◦ h + g ◦ h,
h ◦ (f + g) = h ◦ f + h ◦ g, 0 ◦ h = 0, and h ◦ 0 = 0.

If a category C has finite biproducts, then it carries a canonical such
enrichment: Given f, g : A → B, we can define f + g : A → B as f + g =
[idB, idB] ◦ (f ⊕ g) ◦ 〈idA, idA〉. The unit for this addition is 0A,B,

Remark 2.10 We have q1 ◦ p1 + q2 ◦ p2 = idA⊕B .

Lemma 2.11 Let C,D be categories with finite biproducts, and let F : C →
D be a functor. If F has a left or right adjoint (and in particular, if F is an
equivalence of categories), then F preserves the biproducts up to isomorphism.
Indeed, in this case, the canonical maps

[F (q1), F (q2)] : F (A) ⊕ F (B) → F (A ⊕ B)

〈F (p1), F (p2)〉 : F (A ⊕ B) → F (A) ⊕ F (B)

are mutually inverse. 2

Two special cases of this lemma are of particular interest: in a compact
closed category with biproducts, the tensor is distributive with respect to the
biproducts, i.e., there is a canonical distributivity isomorphism (A⊕B)⊗C ∼=
A ⊗ C ⊕ B ⊗ C.

Also, if C is a dagger category with biproducts, then the functor † au-
tomatically preserves biproducts up to isomorphism. However, in general,
preservation “up to isomorphism” is not quite sufficient; a more desirable
property is that the biproduct should be preserved “on the nose”. The follow-
ing lemma gives four equivalent conditions that achieve this.

Lemma 2.12 Let C be a dagger category with biproducts. Then the following
conditions are equivalent. Here ∆ = 〈id, id〉 : A → A ⊕ A, and ∇ = [id, id] :
A ⊕ A → A.

(a) p
†
i = qi, for i = 1, 2,

(b) (f ⊕ g)† = f † ⊕ g† and ∆† = ∇,
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(c) 〈f, g〉† = [f †, g†],

(d) The following diagram commutes.

A† ⊕ B†

id
[p†

1
,p

†
2
]

A ⊕ B id
(A ⊕ B)†

2

Remark 2.13 The diagram in Lemma 2.12(d) can be seen as a coherence
diagram, analogous to the diagram in Remark 2.5.

Definition 2.14 (Biproduct dagger compact closed category) A biprod-
uct dagger compact closed category is a dagger compact closed category with
biproducts, such that p

†
i = qi : Ai → A1 ⊕ A2, for all objects A1, A2 and

i = 1, 2.

2.6 Examples

Example 2.15 The category Vect of finite dimensional complex vector spa-
ces and linear maps is a compact closed category with biproducts, but it is
not dagger compact closed.

Example 2.16 The category FdHilb of finite dimensional Hilbert spaces
is biproduct dagger compact closed. The adjoint of f : A → B is defined in
terms of the inner product; namely, it is the unique map f † : B → A satisfying
〈fv|w〉 = 〈v|f †w〉, for all v ∈ A, w ∈ B.

Example 2.17 The category Rel of sets and relations is biproduct dagger
compact closed. In this category, A ⊗ B = A × B is the cartesian product
of sets, A ⊕ B = A + B is the disjoint union, and A∗ = A. For a relation
R : A → B, we have R∗ = R† = {(y, x) | (x, y) ∈ R} and R∗ = R.

3 Graphical languages

The graphical languages for symmetric monoidal categories and for compact
closed categories are well-known [5,6]. We briefly recall these languages, and
then extend them to dagger symmetric monoidal categories and dagger com-
pact closed categories.

3.1 Symmetric monoidal categories: term language

Before describing the graphical language of symmetric monoidal categories, it
is useful to briefly summarize their term language.

We assume given a countable set of object variables, denoted α, β, γ etc.
The set of object terms is freely built from object variables and the unit object
term I via the binary operation ⊗. Examples of object terms are α, I ⊗ α,
(α ⊗ β) ⊗ γ, and so forth. We use the letters A, B, C to denote object terms.
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Further, we assume given a countable set of morphism variables, denoted
f, g, h etc. We assume that each morphism variable has been assigned a fixed
type of the form A → B, and we sometimes write fA→B to indicate the type
explicitly. We assume that there are countably many morphism variables for
each type. We are further given morphism constants idA, αA,B,C , α−1

A,B,C , λA,

λ−1
A , σA,B, with their usual types, parameterized by object terms A, B, C. The

set of typed morphism terms is defined recursively: morphism variables and
morphism constants are morphism terms, and if t : A → B, s : B → C, and
r : C → D are morphism terms, then so are s◦ t : A → C and t⊗ s : A⊗C →
B ⊗ D.

We also consider equations s = t between morphism terms s, t : A → B of
matching types. The equational theory of symmetric monoidal categories is the
set of equations generated by the axioms of symmetric monoidal categories.

Remark 3.1 As is usual in formal languages, one distinguishes the concept
of a variable, such as α or f , from the concept of a term, such as A or t. The
symbols “A” and “t” are, of course, variables of the meta-language. We will
make a similar distinction in the graphical language described below.

3.2 Symmetric monoidal categories: graphical language

The graphical language of symmetric monoidal categories was first defined in
a mathematically rigorous way by Joyal and Street [5]. Before that, it was
used informally for many years by physicists, going back to Penrose [8]. In
the formulation that we are going to use, an object variable α is represented
by a labeled wire

α , (4)

A morphism variable f : α1⊗α2⊗ . . .⊗αn → β1⊗β2⊗ . . .⊗βm is represented
by a labeled box

αn βm

. . . . . .
α2 β2

α1

f

β1

(5)

The graphical language associates to each object term A in the language of
symmetric monoidal categories a certain wiring, and to each morphism term
t a certain diagram, made up from wires (4) and boxes (5). We schematically
write

A (6)

for the representation of an object term A, and

A
t

B (7)

for the representation of a morphism term t : A → B.
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(a) Objects

I := (empty) A ⊗ B :=
B

A

(b) Morphisms

A
s ◦ t

C := A
t

B s C

C D

A
t ⊗ s

B
:=

C s D

A
t

B

A idA
A := A

B A

A σA,B B :=
B A

A B

Table 1
The graphical language of symmetric monoidal categories

Definition 3.2 The wiring (6) is defined by recursion on the object term A

as in Table 1(a). Note that the object I is represented by zero wires, i.e., by
the empty wiring. The diagram (7) is defined by recursion on the morphism
term t as in Table 1(b). In addition to the cases shown in Table 1, the maps
αA,B,C , λA, and their inverses are represented in the same way as the identity
morphism.

Remark 3.3 Note that the graphical language strictly speaking only uses
the notations (4) and (5), where α and f are variables. The more general
notations (6) and (7) belong to the meta-language. Therefore, when we speak
of properties of diagrams (such as isomorphism) and operations on diagrams
(such as composition), we always mean this with respect to the underlying
diagram language, and not with respect to the meta-language.

Convention 3.4 When it is convenient to use textual notation, we also write
[[A]] and [[t]] for the diagram associated to an object term A and a morphism
term t : A → B, respectively. In other words, we write

[[A]] := A

[[t]] := A
t

B

Remark 3.5 We have marked each wire with a left-to-right orientation, and
each box with a square in the upper-left corner. For now, these markings are
useless; their significance will become apparent when we introduce additional
markings in the graphical languages of compact closed categories and dagger
symmetric monoidal categories below.
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Example 3.6 The equation

σA′,B′ ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,B

of symmetric monoidal categories can be translated into a diagrammatic equa-
tion, by translating the left-hand-side and the right-hand-side separately:

B g B′ A′

A f A′ B′
=

B A f A′

A B g B′

The equation evidently “holds” in the graphical language, in the sense that
the graphical representation of the left-hand-side and the right-hand-side are
isomorphic as graphs, in an obvious sense with respect to a fixed ordering of
the input- and output-wires. For a technically rigorous formalization of graph
isomorphism in this context, see [5].

Indeed, one has the following theorem, due to Joyal and Street [5]:

Theorem 3.7 (Graphical language of symmetric monoidal catego-
ries) A well-typed equation between morphisms in the language of symmetric
monoidal categories follows from the axioms of symmetric monoidal categories
if and only if it holds, up to graph isomorphism, in the graphical language. 2

3.3 Compact closed categories

The graphical language of compact closed categories extends that of symmetric
monoidal categories. Individual wires can now be oriented right-to-left or left-
to-right. The interpretation of A∗ is a wiring obtained by turning the wiring
[[A]] “upside down”; this means reversing the orientation of each wire, as well
as reversing the bottom-up order of the wires. We schematically write [[A∗]]

as A∗
. More formally, we define the following notations in the meta-

language:

A∗
:= A

A∗
:= A

I := (empty)

A ⊗ B :=
A

B

Note that the ordering of the wires in a tensor product for the right-to-left
orientation is top-to-bottom, not bottom-to-top. Therefore, [[A∗]] is [[A]] turned
“upside-down”.

The structural maps ηA : I → A∗⊗A and εA : A⊗A∗ → I are represented
as follows:

[[ηA]] =
A

A
[[εA]] =

A

A

9
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Note that if t : A → B, then the morphism t∗ : B∗ → A∗, which was defined
in Remark 2.1, is given as follows:

[[t∗]] =

B

A
t

B

A

This is effectively the same as “the diagram of t turned upside down”, and we
introduce the special graphical notation

[[t∗]] = B
t

A

Since we have marked one corner of the box representing t, it is possible to
tell when such a box has been turned upside down. Of course, this notation
belongs to the meta-language.

Equations in the language of compact closed categories, such as λ−1
A ◦(ηA⊗

A) ◦ α−1
A,A∗,A ◦ (A ⊗ ηA) ◦ ρA = idA translate into graphical equations, such as

A
A

A
= A

With the appropriate notion of graph isomorphism, one has the following
theorem, which was implicitly proved by Kelly and Laplaza [6]:

Theorem 3.8 (Graphical language of compact closed categories) A
well-typed equation between morphisms in the language of compact closed cat-
egories follows from the axioms of compact closed categories if and only if it
holds, up to graph isomorphism, in the graphical language. 2

3.4 Dagger symmetric monoidal categories

The graphical language of dagger symmetric monoidal categories extends that
of symmetric monoidal closed categories. There are no additional operations
on objects. If f : A → B is a morphism variable

A f B ,

then f † : B → A is represented by a new type of box as follows:

[[f †]] := B f A

We think of this as “reflecting f about the y-axis”. Note that the objects A and
B have been exchanged, but the orientation of the wires remains unchanged
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(in this case, left to right). More generally, if t : A → B is a term, then [[t†]]
is obtained by reflecting the entire diagram [[t]] about the y-axis. We use the
notation:

[[t†]] = B
t

A ,

We skip the formal recursive definition of “reflecting” and give an example
instead:

Example 3.9 (Reflection of a diagram) Suppose f : A → B ⊗ C and
g : E → C ⊗ D, and let

t = (idB ⊗ g†) ◦ αB,C,D ◦ (f ⊗ idD).

Then the respective graphical representations of t and t† are:

t =

D
g E

f
C

A
B

t† =

D
E g C

A
B f

The graphical language of dagger symmetric monoidal categories satisfies
the usual coherence theorem:

Theorem 3.10 (Graphical language of dagger symmetric monoidal
categories) A well-typed equation between morphisms in the language of dag-
ger symmetric monoidal categories follows from the axioms of dagger symmet-
ric monoidal categories if and only if it holds, up to graph isomorphism, in
the graphical language.

Proof. Soundness is by induction. For completeness, suppose that the graphs
of s, t : A → B are isomorphic. Using equations (1) and (2), we can find
terms s′, t′ such that s = s′ and t = t′ holds in the equational theory of dagger
categories, and such that the only applications of † in s′, t′ are to morphism
variables. Now regard each daggered variable α† as a fresh variable α̃. Since
[[s′]] and [[t′]] are isomorphic, s′ = t′ holds in all symmetric monoidal categories
by Theorem 3.7. Therefore s = s′ = t′ = t in the language of dagger symmetric
monoidal categories. 2

3.5 Dagger compact closed categories

The graphical language of dagger compact closed categories is obtained by
combining the graphical language of compact closed categories with that of
dagger symmetric monoidal categories. We also introduce notations for η

†
A

and ε
†
A:

[[ε†A]] =
A

A
[[η†

A]] =
A

A

11

Selinger

The defining equation of dagger compact closed categories, ηA = σA,A∗ ◦ ε
†
A, is

then evidently satisfied up to graph isomorphism in the graphical language:

[[ηA]] =
A

A
=

A A

A A
= [[σA,A∗ ◦ ε

†
A]].

Theorem 3.11 (Graphical language of dagger compact closed cate-
gories) A well-typed equation between morphisms in the language of dagger
compact closed categories follows from the axioms of dagger compact closed
categories if and only if it holds, up to graph isomorphism, in the graphical
language.

Proof. The proof is the same as that of Theorem 3.10, only using the addi-
tional equation (3) and working relative to Theorem 3.8. 2

Remark 3.12 If f : A → B, then f , f † : B → A, f∗ : A∗ → B∗, and
f ∗ : B∗ → A∗ are graphically represented as follows:

f = A f B f † = B f A

f∗ = A f B f ∗ = B f A

Thus, f∗ can be viewed graphically as f “reflected about the x-axis”.

3.6 Biproduct dagger compact closed categories

The above approach to graphical languages does not easily generalize to the
presence of biproducts. This is due to the presence of two binary operations
on objects (A ⊗ B and A ⊕ B). Since one cannot represent both of these
operations by juxtaposition of objects, a more structured syntax is needed
to represent object terms An approach to a graphical representation for this
language, based on Girard’s proof nets, was recently proposed by Abramsky
and Duncan [2]. We will not consider the issue further in this paper.

4 Positivity and the CPM construction

Dagger compact closed categories were introduced by Abramsky and Coecke
as an axiomatic basis for quantum mechanics, providing an alternative to
(and a generalization of) the usual axiomatization in terms of Hilbert spaces.
Concepts such as unitary maps, projections, and even measurements and the
Born rule can be formulated in this framework [1]. On the other hand, the
present author has argued that a suitable framework for the semantics of
quantum programming languages is not the category of Hilbert spaces and
linear maps, but a category CPM of completely positive operators [9,10].
The advantage of working with completely positive maps is that both quantum
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features (such as unitary evolution) and classical probabilistic features (such
as the different branches of a measurement) can be modeled internally as
morphisms within the same category.

The purpose of this section is to show that (1) the construction of CPM
from FdHilb generalizes to any dagger compact closed category C in place
of FdHilb, and (2) the resulting category of completely positive maps is also
dagger compact closed. We call this construction the CPM construction.

4.1 Positive maps

Definition 4.1 (Positive map) A morphism f : A → A in a dagger category
is called positive if there exists an object B and a morphism g : A → B such
that f = g† ◦ g.

Remark 4.2 If f : A → A is positive, there exist in general many different
decompositions of the form f = g† ◦ g. We are only interested in the existence
of such a decomposition, not in the particular decomposition.

Example 4.3 In the dagger category FdHilb of finite dimensional Hilbert
spaces, the positive morphisms are precisely the positive operators, i.e., those
that satisfy 〈fv|v〉 > 0 for all v.

Example 4.4 In the category Rel of sets and relations, the positive mor-
phisms are precisely the relations R : A → A that are symmetric and satisfy
xRy ⇒ xRx.

Convention 4.5 In the graphical language, a positive map is a map f : A →
A that is of the form

A g B g A

for some B and g. By visual abstraction, we use the notation

A f A

to denote a generic positive map.

Definition 4.6 (Trace) Given a morphism f : A → A in a compact closed
category, its trace tr f : I → I is defined as

tr f = I
σ◦ηA−−−→ A ⊗ A∗ f⊗A∗

−−−→ A ⊗ A∗ εA−→ I.

With the benefit of the graphical language, the trace of f is defined as
follows:

tr f =

A

A f A

13
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Lemma 4.7 (Properties of positive maps) The following properties hold
in any biproduct dagger compact closed category:

(a) If f is positive, then h† ◦ f ◦ h is positive, for any h.

(b) The identity morphism idA is positive. Also, if f : A → A and g : B → B

are positive, then so are f⊗g : A⊗B → A⊗B and f⊕g : A⊕B → A⊕B.

(c) The zero morphism 0A,A : A → A is positive. Also, if f, g : A → A are
positive, then so is f + g.

(d) If f is positive, then f † = f .

(e) If f : A → A is positive, then so are f ∗ : A∗ → A∗ and tr f : I → I.

(f) If f, g : A → A are positive, then so is tr(f ◦ g) : I → I.

Proof. (a)–(e) are straightforward from the definitions and the structure pre-
served by (−)†. For (f), let g = h† ◦ h. Then tr(f ◦ g) = tr(h ◦ f ◦ h†), which
is positive by (a) and (e). 2

Remark 4.8 The converse of Lemma 4.7(d) does not hold: for instance, the
symmetry map σA,A : A ⊗ A → A ⊗ A satisfies σ† = σ, but is not positive in
Rel or FdHilb.

4.2 Positive matrices

Definition 4.9 (Name, positive matrix) In a compact closed category,
the name of a morphism f : A → B is pfq : I → A∗ ⊗ B defined as follows:

[[pfq]] =
A f B

A

The name of a morphism is also sometimes called its matrix, by analogy with
vector spaces. A positive matrix is a morphism pfq : I → A∗ ⊗ A that is the
name of a positive map f : A → A.

Remark 4.10 In the graphical language, a positive matrix is a morphism of
the form

A f A

A
=

A g B g A

A
=

B
k

A

B
k

A

for some B and k = g†. We therefore use the special notation

h

A

A

for a generic positive matrix.
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4.3 Completely positive maps

Definition 4.11 (Completely positive map) Let A, B be objects in a dag-
ger compact closed category. We say that a morphism f : A∗ ⊗ A → B∗ ⊗ B

is completely positive if for all objects C and all positive matrices g : I →
C∗ ⊗ A∗ ⊗ A ⊗ C, the morphism

(C∗ ⊗ f ⊗ C) ◦ g = g

C

A
f

B

A B

C

is a positive matrix.

Lemma 4.12 Let f : A∗⊗A → B∗⊗B. Then f is completely positive if and
only if

χf :=

A

A
f

B

A B

A

is a positive matrix.

Proof. The left-to-right implication is trivial by choosing C = A∗ and g =
(ηA∗)∗ ⊗ ηA∗. For the right-to-left implication, assume χf is a positive matrix.
Then (C∗ ⊗ f ⊗ C) ◦ g is equal to the following matrix, which is seen to be
positive by the graphical language:

(C∗ ⊗ f ⊗ C) ◦ g = g

C

A

χf

A

B

B

A

A

C

.

2

Lemma 4.12 is a categorical version of Choi’s Theorem from linear algebra
[3]. We also call the matrix χf the characteristic matrix of f (cf. [9, Sec. 6.7]).

Corollary 4.13 Using Lemma 4.12 and the graphical language, it immedi-
ately follows that the following are equivalent:

(a) f : A∗ ⊗ A → B∗ ⊗ B is completely positive,

15
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(b) the map
A

A
f

B

A B

B

is positive.

(c) there exists a positive map g : B ⊗ A∗ → B ⊗ A∗ such that

f =

A

A A

B g B

B

(d) there exists an object C and a morphism h : A → C ⊗ B such that

f =

A B
h C

h
C

A B

(e) there exists an object C and a morphism k : C ⊗ A → B such that

f =

A B
C k

C
kA B

2

Convention 4.14 In light of Corollary 4.13(c)–(e), we will use the notation

A
f

B

A B

to denote a generic completely positive map f : A∗ ⊗ A → B∗ ⊗ B.

Remark 4.15 If f : A∗ ⊗ A → B∗ ⊗ B is completely positive, then f = f∗.
The converse does not in general hold, cf. Remark 4.8.

Remark 4.16 A positive matrix g : I → A∗ ⊗ A is the same thing as a
completely positive map f : I∗ ⊗ I → A∗ ⊗ A (modulo the isomorphism
I∗ ⊗ I ∼= I).

Lemma 4.17 (a) The identity map id : A∗ ⊗ A → A∗ ⊗ A is completely
positive.

(b) If f : A∗⊗A → B∗⊗B and g : B∗⊗B → C∗⊗C are completely positive,
then so is g ◦ f : A∗ ⊗ A → C∗ ⊗ C.

16
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(c) If f : A∗⊗A → B∗⊗B and g : C∗⊗C → D∗⊗D are completely positive,
then so is

C∗ ⊗ A∗ ⊗ A ⊗ C
∼=
−→ A∗ ⊗ A ⊗ C∗ ⊗ C

f⊗g
−−→ B∗ ⊗ B ⊗ D∗ ⊗ D

∼=
−→ D∗ ⊗ B∗ ⊗ B ⊗ D.

(d) If f : A → B is any morphism, then f∗ ⊗ f : A∗ ⊗ A → B∗ ⊗ B is
completely positive.

Proof. Immediate, using the graphical language. 2

4.4 The CPM construction

Definition 4.18 (CPM construction) Given a dagger compact closed cat-
egory C, we define a new category CPM(C) whose objects are the same as
the objects of C. A morphism f : A → B in CPM(C) is a completely positive
map f : A∗ ⊗ A → B∗ ⊗ B in C. Composition of morphisms is as in C.

Remark 4.19 By Lemma 4.17(a) and (b), CPM(C) is indeed a category.
Moreover, Lemma 4.17(d) yields a functor F : C → CPM(C), defined via
F (A) = A and F (f) = f∗ ⊗ f .

Theorem 4.20 CPM(C) is again dagger compact closed. The tensor prod-
uct on objects is inherited from C; on morphisms it is given by Lemma 4.17(c).
The structural maps αA,B,C , λA, σA,B, ηA and εA are all given by the im-
ages of the respective maps of C under F . If f : A∗ ⊗ A → B∗ ⊗ B, then
f † in CPM(C) is given by f † : B∗ ⊗ B → A∗ ⊗ A in C. The functor
F : C → CPM(C) preserves the dagger compact closed structure.

Proof. The required equations are easy to verify. To aid the task, Table 2
gives a translation of the graphical language of CPM(C) into that of C. We
prove one equation as an example: to prove that

C g D B

A f B D
=

C A f B

A C g D

holds in CPM(C), we must prove the following in C:

C C
g

D D B
A C D B D

A A
f

B B D
C A B D B

=

C A A
f

B B
A C A B D

A C C
g

D D
C A C D B

This is evidently true by graph isomorphism. The proof of the other equations
is similar. 2
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In the graphical language of
CPM(C):

In the graphical language of C:

f : A f B
A

f
B

A B

f † : B f A B
f

A
B A

f∗ : B f A B B
f

A A
B B A A

f∗ : A f B A A
f

B B
A A B B

idA : A
A

A

g ◦ f : A f B g C
A

f
B

g
C

A B C

f ⊗ g :

C g D

A f B

C C
g

D D
A C D B
A A

f
B B

C A B D

σA,B :
B A

A B

B A
A B
A B
B A

and similarly for all constants c ∈ {idA, αA,B,C , α−1
A,B,C , λA, λ−1

A , σA,B, ηA, εA}:

c : X c Y

X c Y

X c Y

Table 2
The CPM construction in the graphical language
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Example 4.21 The category CPM(FdHilb) has as its objects finite di-
mensional Hilbert spaces, and as its morphisms completely positive maps
f : A∗ ⊗ A → B∗ ⊗ B. It is the same as the full subcategory of simple
objects of the category W of [9]. See also Example 5.4 below. We note that
the canonical functor F : FdHilb → CPM(FdHilb) is “almost” faithful:
indeed, if f, g : A → B are two morphisms of FdHilb, then F (f) = F (g) if
and only if there exists a unit scalar φ such that f = φg. In other words, the
functor F identifies those morphisms that differ only by a global change of
phase.

5 Biproducts and the CPM construction

5.1 Biproduct completion of a dagger compact closed category

Let C be a category that is enriched over commutative monoids (see Sec-
tion 2.5). Recall that one can construct the biproduct completion C⊕ of C
as follows (cf. [7], Exercise VIII.2.6). The objects of C⊕ are finite tuples
〈A1, . . . , An〉 of objects of C, where n > 0. Morphisms are given by matrices,
and composition by matrix multiplication. Then C⊕ is a category with biprod-
ucts. Further, the singleton functor F (A) = 〈A〉 is an embedding C → C⊕.

Recall moreover that if C is compact closed, and if the tensor operation
is linear (i.e., f ⊗ (g + g′) = f ⊗ g + f ⊗ g′ and f ⊗ 0 = 0), then C⊕ is also
compact closed.

The construction of C⊕ extends to dagger compact closed categories:

Proposition 5.1 Suppose C is a dagger compact closed category, enriched in
commutative monoids as a compact closed category. Further suppose that the
dagger functor is linear, i.e., (g + g′)† = g† + g′† and 0† = 0. Then C⊕ is a
biproduct dagger compact closed category.

Proof. The adjoints of C⊕ are defined by matrix transposition and taking
the adjoint of each matrix component. 2

5.2 The CPM construction with biproducts

Suppose C is a biproduct dagger compact closed category. In general, the cat-
egory CPM(C) does not have biproducts. However, as the following lemma
shows, CPM(C) is monoid-enriched. Therefore, we can construct its biprod-
uct completion CPM(C)⊕.

Lemma 5.2 In a biproduct dagger compact closed category, if f, g : A∗⊗A →
B∗ ⊗B are completely positive, then so are f + g and 0 : A∗ ⊗A → B∗ ⊗B.2

Corollary 5.3 Let C be a biproduct dagger compact closed category. Then
CPM(C) is enriched in commutative monoids as a dagger compact closed
category. Therefore, its biproduct completion CPM(C)⊕ is well-defined. 2
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We call the construction of CPM(C)⊕ from C the CPM construction with
biproducts. Note that the canonical functor C → CPM(C)⊕ preserves the
dagger compact closed structure, but does not preserve the biproducts. The
biproducts of CPM(C)⊕ do not resemble those of C.

Example 5.4 Applying the CPM construction with biproducts to C = FdHilb,
we obtain the category CPM(FdHilb)⊕, which is identical to the category
W of [9, Remark 6.9]. Concretely, the objects are finite tuples of finite di-
mensional Hilbert spaces, and the morphisms are matrices of completely pos-
itive operators. Some special objects of the category CPM(FdHilb)⊕ are
qbit = 〈C2〉, the type of quantum bits, and bit = 〈C, C〉, the type of classical
bits. Of course, we have bit ∼= I⊕I, where I is the tensor unit, and bit 6∼= qbit.
Composite data types can be constructed by means of the operations ⊗ and
⊕.

6 Applications

6.1 Completely positive maps and the interpretation of quantum protocols

In [1], Abramsky and Coecke argue that the flow of classical information within
a quantum protocol, such as the classical information that is the outcome of
a measurement operation, can be modeled via the biproducts in the category
FdHilb of finite dimensional Hilbert spaces.

In FdHilb, the tensor unit I is just the base field C. Abramsky and
Coecke define the type of quantum bits as qbit := I ⊕ I = C

2. Initialization
base : I ⊕ I → qbit and destructive measurement meas : qbit → I ⊕ I are
both modeled as isomorphisms; in fact as the identity function. It follows that
the composition

qbit
meas
−−→ I ⊕ I

base
−−→ qbit (8)

is equal to the identity map. This clearly contradicts physical reality, where
the outcome of such an experiment would actually be a mixed state. Abramsky
and Coecke circumvent this problem by not allowing compositions such as the
above to occur in the interpretation of any quantum experiment.

On the other hand, in the category CPM(FdHilb)⊕ (see Example 5.4),
the initialization and measurement functions base and meas are not isomor-
phisms, but are given, relative to the canonical bases of qbit∗ ⊗ qbit and
I ⊕ I, by

meas





a b

c d



 = (a, d), base(a, d) =





a 0

0 d



 .

We see that the composition is not the identity, but correctly maps a pure
state (a rank 1 positive matrix) to a possibly mixed state (a positive matrix
of rank > 2).

Recall that the category FdHilb is “embedded” inside CPM(FdHilb)⊕

(up to a collapse of global phases, see Example 4.21). Therefore, any construc-
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tion that can be done in FdHilb can also be done within CPM(FdHilb)⊕.
In fact, since the embedding F : FdHilb → CPM(FdHilb)⊕ is structure
preserving, any such constructions will stay entirely within FdHilb as long
as the biproducts are not used.

However, as we have already seen, the biproducts in FdHilb do not
at all resemble those of CPM(FdHilb)⊕. In FdHilb, we have I ⊕ I =
qbit, whereas in CPM(FdHilb)⊕, we have I ⊕ I = bit. Informally speak-
ing, the scalars of FdHilb correspond to amplitudes, whereas the scalars of
CPM(FdHilb)⊕ correspond to probabilities. Since the functor F : FdHilb →
CPM(FdHilb)⊕ maps a linear function f to the completely positive map
f∗ ⊗ f , it actually carries out the “squaring” operation that maps amplitudes
to probabilities. Thus, the fact that the CPM construction does not pre-
serve biproducts can be seen as a categorification of the inequality |x + y|2 6=
|x|2 + |y|2.

Note that the axiomatic framework of Abramsky and Coecke, while orig-
inally developed to describe the category FdHilb, applies almost without
change to the category CPM(FdHilb)⊕. Thus, it is trivial to adapt e.g.
the interpretation of quantum protocols to this new setting. Only one small
change is necessary: one should drop the condition of [1, Sec. 8.2] that the
canonical map I ⊕ I → qbit is an isomorphism, and should instead require
only a retraction:

I ⊕ I base

id

qbit

meas

I ⊕ I

6.2 Dagger categories and predicate transformer semantics

We briefly discuss another application of dagger categories. As it turns out,
the duality embodied by the dagger operation can be rediscovered in a pro-
gramming language setting as a duality between “denotational semantics” and
“weakest precondition semantics”.

In [9], I described a simple first-order quantum programming language
QPL. This language was given a straightforward denotational semantics in
the category CPM(FdHilb)⊕ as follows. The types of the language are built
from basic types I, qbit, and bit via the type constructors ⊗ and ⊕, and they
are interpreted as objects of the category CPM(FdHilb)⊕ as in Example 5.4
above. Further, each program P : A → B is interpreted as a morphism in the
category CPM(FdHilb)⊕:

[[P ]] : A → B (9)

D’Hondt and Panangaden gave a weakest precondition semantics for the
same programming language, using the idea of predicate transformers [4]. In
summary, types are again interpreted as objects in CPM(FdHilb)⊕, just like
in the denotational semantics. D’Hondt and Panangaden define a predicate
at a type A to be an element of the object A (more precisely, a morphism
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I → A). They then associate to each program P : A → B a predicate
transformer wp(P ), which is a function that associates to each predicate at
type B a predicate at type A called its “weakest precondition”. Thus, we
have:

wp(P ) : B → A (10)

Both interpretations [[P ]] and wp(P ) are defined by induction on the pro-
gram P , starting from simple base cases, and using the categorical structure.
It is interesting to note that neither of these interpretations explicitly relies
on the dagger structure of the category CPM(FdHilb)⊕. However, we find
that the dagger structure plays a crucial role in relating the two semantics:
indeed, they are adjoint to each other in the sense that

wp(P ) = [[P ]]†

for all programs P . Since both semantics are compositional, one can prove
this by induction on P . It immediately follows that the two semantics are
equivalent, i.e., for two programs P, Q : A → B, we have [[P ]] = [[Q]] if and
only if wp(P ) = wp(Q).

Remark 6.1 Strictly speaking, the target of the original interpretation [[P ]]
of [9] is not the category CPM(FdHilb)⊕ of completely positive maps, but
its subcategory Q of superoperators. Superoperators are completely positive
maps satisfying an additional trace condition. Similarly, the target of the
original interpretation wp(P ) of [4] is not CPM(FdHilb)⊕, but rather a
certain subcategory of healthy maps. As expected, superoperators are precisely
the †-duals of healthy maps.

7 Conclusion

We have shown that Abramsky and Coecke’s framework of dagger (“strongly”)
compact closed categories applies to the world of completely positive maps.
With the CPM construction, we have provided a general way of constructing
a category of completely positive maps out of any dagger compact closed
category. This construction corresponds to the passage from “amplitudes” to
“probabilities”, or from “purely quantum” to “mixed quantum and classical”
systems. The fact that dagger compact closed categories provide a single
axiomatic basis for both these settings is remarkable, and shows that dagger
compact closed categories are indeed a flexible and unifying framework for the
semantics of quantum programming languages and protocols.
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