
A Brief Survey Of Quantum

Programming Languages

Peter Selinger

Department of Mathematics, University of Ottawa
Ottawa, Ontario, Canada K1N 6N5
selinger@mathstat.uottawa.ca

Abstract. This article is a brief and subjective survey of quantum pro-
gramming language research.

1 Quantum Computation

Quantum computing is a relatively young subject. It has its beginnings in 1982,
when Paul Benioff and Richard Feynman independently pointed out that a
quantum mechanical system can be used to perform computations [11, p.12].
Feynman’s interest in quantum computation was motivated by the fact that
it is computationally very expensive to simulate quantum physical systems on
classical computers. This is due to the fact that such simulation involves the
manipulation is extremely large matrices (whose dimension is exponential in the
size of the quantum system being simulated). Feynman conceived of quantum
computers as a means of simulating nature much more efficiently.

The evidence to this day is that quantum computers can indeed perform
certain tasks more efficiently than classical computers. Perhaps the best-known
example is Shor’s factoring algorithm, by which a quantum computer can find
the prime factors of any integer in probabilistic polynomial time [15]. There
is no known classical probabilistic algorithm which can solve this problem in
polynomial time. In the ten years since the publication of Shor’s result, there
has been an enormous surge of research in quantum algorithms and quantum
complexity theory.

2 Quantum Programming Languages

Quantum physics involves phenomena, such as superposition and entanglement,
whose properties are not always intuitive. These same phenomena give quantum
computation its power, and are often at the heart of an interesting quantum
algorithm. However, there does not yet seem to be a unifying set of principles
by which quantum algorithms are developed; each new algorithm seems to rely
on a unique set of “tricks” to achieve its particular goal.

One of the goals of programming language design is to identify and promote
useful “high-level” concepts — abstractions or paradigms which allow humans

2

to think about a problem in a conceptual way, rather than focusing on the de-
tails of its implementation. With respect to quantum programming, it is not
yet clear what a useful set of abstractions would be. But the study of quantum
programming languages provides a setting in which one can explore possible lan-
guage features and test their usefulness and expressivity. Moreover, the definition
of prototypical programming languages creates a unifying formal framework in
which to view and analyze existing quantum algorithm.

2.1 Virtual Hardware Models

Advances in programming languages are often driven by advances in compiler
design, and vice versa. In the case of quantum computation, the situation is
complicated by the fact that no practical quantum hardware exists yet, and not
much is known about the detailed architecture of any future quantum hardware.

To be able to speak of “implementations”, it is therefore necessary to fix some
particular, “virtual” hardware model to work with. Here, it is understood that
future quantum hardware may differ considerably, but the differences should
ideally be transparent to programmers and should be handled automatically by
the compiler or operating system. There are several possible virtual hardware
models to work with, but fortunately all of them are equivalent, at least in
theory. Thus, one may pick the model which fits one’s computational intuitions
most closely.

Perhaps the most popular virtual hardware model, and one of the easiest
to explain, is the quantum circuit model. Here, a quantum circuit is made up
from quantum gates in much the same way as a classical logic circuit is made
up from logic gates. The difference is that quantum gates are always reversible,
and they correspond to unitary transformations over a complex vector space.
See e.g. [3] for a succinct introduction to quantum circuits. Of the two basic
quantum operations, unitary transformations and measurements, the quantum
circuit model emphasizes the former, with measurements always carried out as
the very last step in a computation.

Another virtual hardware model, and one which is perhaps even better suited
for the interpretation of quantum programming languages, is the QRAM model

of Knill [9]. Unlike the quantum circuit model, the QRAM models allows unitary
transformations and measurements to be freely interleaved. In the QRAM model,
a quantum device is controlled by a universal classical computer. The quantum
device contains a large, but finite number of individually addressable quantum
bits, much like a RAM memory chip contains a multitude of classical bits. The
classical controller sends a sequence of instructions, which are either of the form
“apply unitary transformation U to qubits i and j” or “measure qubit i”. The
quantum device carries out these instruction, and responds by making the results
of the measurements available.

A third virtual hardware model, which is sometimes used in complexity the-
ory, is the quantum Turing machine. Here, measurements are never performed,
and the entire operation of the machine, which consists of a tape, head, and finite
control, is assumed to be unitary. While this model is theoretically equivalent



3

to the previous two models, it is not generally considered to be a very realistic
approximation of which a future quantum computer might look like.

2.2 Imperative Quantum Programming Languages

The earliest proposed quantum programming languages followed the imperative

programming paradigm. This line of languages was started by Knill [9], who
gave a set of conventions for writing quantum algorithms in pseudo-code. While
Knill’s proposal was not very formal, it was very influential in the design of
later imperative quantum programming languages. More complete imperative
languages were defined by Ömer [10], Sanders and Zuliani [13], and Bettelli
et al. [2].

A common feature of these imperative quantum programming languages is
that a program is viewed as a sequence of operations which operate by updating
some global state. These languages can be directly compiled onto (or interpreted
in) the QRAM virtual hardware model. Quantum states in this paradigm are
typically realized as arrays of qubits, and run-time checks are needed to detect
certain error conditions. For instance, out-of-bounds checks are necessary for
array accesses, and distinctness checks must be used to ensure i 6= j when
applying a binary quantum operation to two qubits i and j. As is typical for
imperative programming languages, the type system of these languages is not
rich enough to allow all such checks to be performed at compile-time. Also,
typically these languages do not have a formal semantics, with the exception of
Sanders and Zuliani’s language, which possesses an operational semantics.

The various languages in this category each offer a set of advanced pro-
gramming features. For instance, Ömer’s language QCL contains such features
as, automatic scratch space management, and a rich language for describing
user-defined operators [10]. It also offers some higher-order operations such as
computing the inverse of a user-defined operator.

The language of Bettelli et al. emphasizes practicality. It is conceived as an
extension of C++, and it treats quantum operators as first-class objects which
can be explicitly constructed and manipulated at run-time [2]. One of the most
powerful features of this language is the on-the-fly optimization of quantum
operators, which is performed at run-time.

Finally, Sanders and Zuliani’s language qGCL is of a somewhat different
flavor [13]. Based on Dijkstra’s guarded command language, qGCL is as much a
specification language as a programming language, and it supports a mechanism
of stepwise refinement which can be used to systematically derive and verify
programs.

2.3 Functional Quantum Programming Languages

In the functional programming style, programs do not operate by updating a
global state, but by mapping specific inputs to outputs. The data types associ-
ated with purely functional languages (such as lists, recursive types) are more
amenable to compile time analysis than their imperative counterparts (such as

4

arrays). Consequently, even in very simple functional programming languages,
many run-time checks can be avoided in such languages in favor of compile-time
analysis.

The first proposal for a functional quantum programming language was made
in [14]. In this paper, a language QFC is introduced, which represents programs
via a functional version of flow charts. The language also has an alternative,
text-based syntax. Both unitary operations and measurements are directly built
into the language, and are handled in a type-safe way. Classical and quantum
features are integrated within the same formalism. There are no run-time type
checks or errors. The language can be compiled onto the QRAM model, and it
also possesses a complete denotational semantics, which can be used to formally
reason about programs. The denotational semantics uses complete partial orders
of superoperators, and loops and recursion are interpreted as least fixpoints in
the way which is familiar from domain-theoretic semantics.

The basic quantum flow chart language of [14] is functional, in the sense of
being free of side-effects. However, functions are not themselves treated as data,
and thus the language lacks the higher-order features typical of most functional
programming languages such as ML or Haskell. It is however possible to extend
the language with higher-order features. The main technical difficulty concerns
the proper handling of linearity; here, one has to account for the fact that quan-
tum information, unlike classical information, cannot be duplicated due to the
so-called “no-cloning property”. Van Tonder, in a pair of papers [16, 17], has de-
scribed a linear lambda calculus for quantum computation, with a type system
based on Girard’s linear logic [7].

Van Tonder’s calculus is “purely” quantum, in the sense that it does not
incorporate classical data types, nor a measurement operation. If one further
extends the language with classical features and a measurement primitive, then
a purely linear type system will no longer be sufficient; instead, one needs a
system with linear and non-linear types. Such a language, with intuitionistic
linear logic as its type system, will be presented in a forthcoming paper by
Benôıt Valiron.

We should also mention that there is some interesting work on using func-
tional languages to simulate quantum computation. For instance, Sabry [12]
shows how to model quantum computation in Haskell.

3 Semantics

The basic flow chart language of [14] has a satisfactory denotational semantics,
but it lacks many language features that would be desirable, including higher-
order features and side-effects. In trying to add new language features, one may
either work syntactically or semantically. Semantic considerations, in particular,
may sometimes suggest useful abstractions that are not necessarily apparent
from a syntactic point of view. We briefly comment on some semantic projects.

Girard [8] recently defined a notion of quantum coherent spaces as a possible
semantics for higher-order quantum computation. The class of quantum coher-



5

ent spaces has good closure properties, for instance, it forms a *-autonomous
category. However, the model is still incomplete, because the interpretation of
quantum languages in this category is currently limited to the “perfect”, or
purely linear, fragment of linear logic. This means that classical data is subject
to the same non-duplication restriction as quantum data in this model.

A different approach to a semantics for higher-order quantum computation
is given by Abramsky and Coecke [1]. This work is more qualitative in nature,
and relies on entanglement and quantum measurement to model higher-order
functions and their applications, respectively.

Also on the semantic side, there have been a number of works on possible
connections between quantum theory and domain theory. For instance, Edalat
[5] gives a domain-theoretic interpretation of Gleason’s theorem in the presence
of partial information. Coecke and Martin [4] give a domain-theoretic treatment
of the von Neumann entropy of a quantum state.

3.1 Topological Quantum Computation

An radically different direction in the semantics of quantum computation, and
one which might lead to the discovery of new conceptual paradigms for quan-
tum computation, is the work of Freedman, Kitaev, and Wang [6]. This line of
work seeks to exploit connections between quantum computation and topological
quantum field theories (TQFT’s). In a nutshell, in topological quantum compu-
tation, a quantum state is represented by a physical system which is resistant to
small perturbations. Thus, quantum operations are determined only by global
topological properties, e.g., linking properties of the paths traversed by some
particles. This leads to a potentially very robust model of quantum computa-
tion. It also suggests that there is a more discrete, combinatorial way of viewing
quantum computation, which might in turns suggest new quantum algorithms.
These topological approaches to quantum computation are currently limited to
a description of unitary operators; measurements are not currently considered
within this model.

4 Challenges

There are many remaining challenges in the design and analysis of quantum
programming languages. One such challenge is to give a sound denotational
semantics for a higher-order quantum programming language, including classical
features and measurement. While there has been recent progress on this issue,
both on the syntactic side and on the semantic side, the connection between
syntax and semantics remains tenuous at this point, and typically covers only
fragments of the language. A related question is how to model infinite data types,
particularly types which include an infinite amount of “quantum” data.

Another challenge is to formulate a theory of “quantum concurrency”. This is
not far-fetched, as one can easily imagine networks of quantum processes which
communicate by exchanging classical and quantum data. There is a considerable

6

body of work in quantum information theory and quantum cryptography, which
suggests some potential applications for quantum concurrent systems.

Another interesting research area is the implementation of quantum program-
ming languages on imperfect hardware. Unlike the idealized “virtual machine”
models of quantum computation, one may assume that real future implemen-
tations of quantum computation will be subject to the effects of random errors
and decoherence. There are known error correction techniques for quantum in-
formation, but it is an interesting question to what extent such techniques can
be automated, for instance, by integrating them in the compiler or operating
system, or to what extent specific algorithms might require customized error
correction techniques.

References

1. S. Abramsky and B. Coecke. Physical traces: Quantum vs. classical information
processing. In R. Blute and P. Selinger, editors, Proceedings of Category Theory

and Computer Science, CTCS’02, ENTCS 69. Elsevier, 2003.
2. S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum pro-

gramming. arXiv:cs.PL/0103009 v2, Nov. 2001.
3. R. Cleve. An introduction to quantum complexity theory. In C. Macchiavello,

G. Palma, and A. Zeilinger, editors, Collected Papers on Quantum Computation

and Quantum Information Theory, pages 103–127. World Scientific, 2000.
4. B. Coecke and K. Martin. A partial order on classical and quantum states. Tech-

nical report, Oxford University Computing Laboratory, 2002. PRG-RR-02-07.
5. A. Edalat. An extension of Gleason’s theorem for quantum computation.

http://www.doc.ic.ac.uk/∼ae/papers.html, 2003.
6. M. H. Freedman, A. Kitaev, and Z. Wong. Simulation of topological field theories

by quantum computers. arXiv:quant-ph/0001071/ v3, Mar. 2000.
7. J.-Y. Girard. Linear logic. Theoretical Comput. Sci., 50:1–102, 1987.
8. J.-Y. Girard. Between logic and quantic: a tract. Manuscript, Oct. 2003.
9. E. H. Knill. Conventions for quantum pseudocode. LANL report LAUR-96-2724,

1996.
10. B. Ömer. A procedural formalism for quantum computing. Master’s thesis,

Department of Theoretical Physics, Technical University of Vienna, July 1998.
http://tph.tuwien.ac.at/∼oemer/qcl.html.

11. J. Preskill. Quantum information and computation. Lecture Notes for Physics
229, California Institute of Technology, 1998.

12. A. Sabry. Modeling quantum computing in Haskell. In ACM SIGPLAN Haskell

Workshop, 2003.
13. J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics of Program

Construction, Springer LNCS 1837, pages 80–99, 2000.
14. P. Selinger. Towards a quantum programming language. Mathematical Structures

in Computer Science. To appear.
15. P. Shor. Algorithms for quantum computation: discrete log and factoring. In

Proceedings of the 35th IEEE FOCS, pages 124–134, 1994.
16. A. van Tonder. A lambda calculus for quantum computation. arXiv:quant-ph/

0307150/ v4, Dec. 2003.
17. A. van Tonder. Quantum computation, categorical semantics and linear logic.

arXiv:quant-ph/0312174/ v1, Dec. 2003.


