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Abstract

The search for a semantics for higher-order quantum cortipntieads naturally
to the study of categories of normed cones. In the first pahispaper, we develop the
theory of continuous normed cones, and prove some of theic peoperties, including
a Hahn-Banach style theorem. We then describe two diff@@miretex-autonomous
categories of normed cones. The first of these categoriesilisftom completely
positive maps as in the author's semantics of first-ordentyuima computation. The
second category is a reformulation of Girard’s quantum carfitespaces. We also point
out why ultimately, neither of these categories is a satiefg model of higher-order
quantum computation.

1 Introduction

In quantum computation, one often considers programs wihéglend parametrically on
a so-calledblack box which is typically a quantum circuit that computes somenawn
function. The black box is considered to be part of the inguhe program, but it dif-
fers from ordinary data, such as qubits, in that it can onlytdsted via observing its
input/output behavior. In the terminology of functionabgramming, programming with
black boxes is a special case of what is knowmigker-order functional programming
which means, programming with functions whose input anoiédput may consist of other
functions.

Recently, there have been some proposals for higher-oudetam programming lan-
guages, based on linear versions of the lambda calculuslpPL110]. These languages
have been given meaning syntactically, in terms of tbeirationalbehavior; however,
there is currently no satisfactodenotationalsemantics of such higher-order quantum
programming languages. This is in contrast to the first4ocdse, where a complete de-
notational description of the quantum computable funation finite data types, based on
superoperators, has been given [8].
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In trying to extend this work to the higher-order case, onledsto search for a sym-
metric monoidal closed category which contains the categbsuperoperators from [8]
as a full, symmetric monoidal subcategory. This leads a#i{uto the study of categories
of normed cones, as pioneered by Girard in his study of gquactherent spaces [5].

In the first part of the present paper, we attempt to develogstesatic account of
normed cones and their basic properties. The study of noooees is similar, in many
respects, to the study of normed vector spaces, but thesoare important differences,
notably the presence of a partial order, the so-catiede order This order allows us
to use techniques from domain theory [2], and to work witheotitheoretic notions of
convergence and continuity which are rather stronger thardrresponding notions that
are usually available in normed vector spaces such as Bapackes.

In the second part of this paper, we report on two instrudtite ultimately failed)
attempts at constructing a model of higher-order quantumpedation based on normed
cone techniques. We describe two concrete categories wfatbcones. The first such cat-
egory is a direct generalizations of the category of supenatprs from the author’'s work
on first-order quantum computation [8]. The second catedopased on a reformulation
of Girard’s quantum coherent spaces. Both categories tirtoobex-autonomous, and
thus possess all the structure required to model higheardireear language features (and
more). However, neither of these categories yields theecbanswer at base types, and
thus they are not correct models of quantum computation. atiieor believes that the
techniques used here are nevertheless interesting and toniglout to be building blocks
in the construction of a model of higher-order quantum cotaigon in the future.

Acknowledgments and Errata. | am grateful to Andrea Schalk for many useful discus-
sions on the topics of this paper, and to Vincent Danos faiections. The current version
of this paper differs from the published version. | have eoted errors in Lemma 2.10
and Example 2.11, as well as some minor typos.

2 Cones

In this section, we develop the basic theory of continuousiea cones. The techniques
used are similar to those employed in the study of normedvagiaces, except that we
also make extensive use of domain-theoretic methods t@igxpe partial order which
naturally exists on cones. Another domain-theoretic tneat of cones was given by Tix
[9], but the present work differs in many key details, suclih@spresence of a norm, and
the consequently modified notion of completeness.

2.1 Abstract cones

Let R, be the set of non-negative real numbers. dstract conés analogous to a real
vector space, except that we tdRe as the set of scalars. Singe. is not a field, we have
to replace the vector space lawt (—v) = 0 by acancellation lawv + v = w + u =

v = w. We also requirstrictnesswhich means, no non-zero element has a negative.



Definition (Abstract cone) An abstract conds a setV/, together with two operations
+:VxV —=Vand : Ry xV — V and a distinguished elemeint V, satisfying the
following laws for allv, w,u € V andA, u € Ry

O+v=v lv=w
vt () = (0w tu o= A)
v+w=w+v A+ p)v =X v+ pw

AMv +w) = v+ \w,

v+u=w+u = wv=w (cancellation)
v+w=0 = wv=w=0 (strictness)

Example2.1 R, is an abstract cone. The set
Ri = {(SCl,...,In) | Lly---3Tn €R+}

is an abstract cone, with the coordinate-wise operationsreNgenerally, ifi;, ..., V,
are abstract cones, then solis x ... x V,,. The set of all complex hermitian positive
n X n-matrices,

Pp={AeC"™ | A= A"andVv € C".v"Av > 0}
is an abstract cone.

Definition (Linear function) A linear functionof abstract cones is a functigh: V- — W
such thatf (v + w) = f(v) + f(w) andf(Av) = Af(v), forallv,w € V andX € R,.

Remark.Every abstract conE can be completed to a real vector space(V), which we
call theenveloping spacef V. The elements afnv(V) are pairv, w), wherev,w € V,
modulo the equivalence relatiq, w) ~ (v',w’) if v + v = v + w. Addition and
multiplication by non-negative scalars are defined poiséwand we define (v, w) =
(w,v). We say that an abstract condirgte dimensionaif its enveloping space is a finite
dimensional vector space.

Definition (Convexity) A subsetD of an abstract con¥ is said to beconvexif for all
u,v € DandX € [0,1], \u + (1 — A\)v € D. Theconvex closuref a setD is defined to
be the smallest convex set containifg

2.2 The cone order

Definition (Cone order) Let V' be an abstract cone. Tlgene ordeiis defined by C w
if there existsu € V such that + v = w. Note that the cone order is a partial order. If
v C w, then we sometimes also write— v for the unique element such that) + u = w.

Remark. Note that every linear function of abstract corfesV — W is alsomonotone
i.e.,v C v implies f(v) C f(v'). Also, addition and scalar multiplication are monotone
operations.

Example2.2 OnRR,, the cone order is just the usual ordepf the reals. OR”, itis the
pointwise order. OrP,, it is the so-called.dwner partial orderf7].



Definition (Down-closure) Let D C V' be a subset of an abstract cone.désvn-closure
D is the set{u € V|3v € D.u C v}. We say thatD is down-closedf D = |D.
The concept ofip-closures defined dually. Note that the down-closure of a convexsset i
convex.

2.3 Normed cones

Definition (Norm). LetV be an abstract cone.@ormonV is a function|—|| : V' — R4
satisfying the following conditions for all, w € V andX € R:

v+ wll < [[v] + [lw]]
[Av]| = Allv]|

[ =0=v=0

v w= o] < u

A normed con&” = (V, ||—||) is an abstract cone equipped with a norm.

Remark.The first three conditions of a norm are just the usual comattfor a norm on a
vector space, except of course that the scalar propertgtisated to non-negative scalars.
The last condition ensures that the normmisnotone

Definition (Unitideal). Theunit idealof a normed con& is the set
Dy ={veV ||l <1}

It is akin to the unit ball in a normed vector space.

2.4 Complete normed cones
We recall the definition of a directed complete partial ofdem domain theory [2].

Definition (Directed complete partial order (dcpo)) partially ordered se# is called
directedif for all a,b € A, there existg € A with a,b C ¢. A partially ordered setD, C)
is called adirected complete partial order (dcpdevery directed subsef of D has a
least upper bound i. The least upper bound of a directed sub$és denoted by/A,
and it is also called thdirected supremupnor sometimes thimit, of A.

If Iis a directed poset anB is a dcpo, then a monotone map I — D is called
andirected nef(or simply nef). As usual, we write a net &&;);c;. The image of a net
is a directed subset dP, and its directed supremum is written \}f%lai. Note that an
increasing sequence is a particular kind of directed net.

Definition (Complete normed coneA normed cond/ is calledcompletsf its unit ideal
is a directed complete partial order.

Remark.A normed conéd’ is complete if and only if the following two conditions hold,
for all directed netga;);cr in V:

o if \f.a; exists, ther|\f.a;|| = \/; | a:||, and



o if {||la;|| | i € I'} is bounded, thely,a; exists.

The first of these condition states that the norr&®tt-continuoud.e., it preserves di-
rected suprema. The second conditioné@mpletenessondition; it is akin to the require-
ment, in complete normed vector spaces, that every Caudiogsee has a limit. However
unlike in normed vector spaces, we require convergenceresiect to therder, not with
respect to th@orm The norm merely serves to rule out unbounded sequences.

2.5 Examples

We write x U y for the maximum of two numbers,y € R.. Note that this operation
is commutative and associative, has uhitand is distributive with respect to addition:
(zUy)+z=(x+2)U(y+ 2).

Example2.3. R, is a complete normed cone witlx|| = z. The setR’} is a complete
normed cone with thé-norm

(@1, s xn)|1 =21 + ... + @n.

The sefR” is also a complete normed cone with tkenorm
T p

[(z1,. .., 2n)||co =1 U. .. Uzy.

More generally, ifl;,...,V, are complete normed cones, then each of the following
formulas makd/ x ... x V,, into a complete normed cone:

[(vi,. o)l = lloallve + -0+ lvallv,,
[(01;- s on)lloo = lloallv U U oy, -
We write V; @ ... @ V,, for the normed conéV; x ... x V,,||—]l1), and we write

Vi& ... &V, forthe normed conéV; x ... x Vp,, || —|lco)-
The setP,, of complex hermitian positive x n-matrices is a complete normed cone
with the 1-norm (or trace norn)

1Al = [Ale =tr A =" ai.

Itis also a complete normed cone with tienorm (or operator norm
[A]lco = sup{|Av| [ v € C", [v] <1},

where|v| = v/v*v denotes the usual norm of a complex vector. Note th8}; is the sum
of the eigenvalues ofl (counted according to multiplicity), anf|| . is the maximum of
the eigenvalues.

Example2.4. Consider the seV = {(z,y) |z =y =0o0rz,y >0} C R? with the
norm||(z,y)|| = = + y. Clearly,V is a normed cone. However, it is not complete: the
increasing sequenag = (2 — 1/4,2 — 1/i) has many upper bounds, none of which is
least. For exampld?2,2) and(2, 3) are two incomparable minimal upper bounds.



Example2.5. Let ¢, be the set of sequencedin. of bounded sum, together with the sum
norm||(z;)||1 = >, zi. Letl be the set of bounded sequenceRin together with the
supremum nornf{(x;);|lcc = Sup x;. Then both¢; and/,, are complete normed cones.
Least upper bounds are given pointwise.

Example2.6. Let P be any partially ordered set, and Rt be the set of bounded mono-
tone mapsf : P — R,. LetRY be equipped with the pointwise operations of addition
and scalar multiplication, and with the supremum ndjiffi. = sup{f() | i € P}. Then
Ri is a complete normed cone. Least upper bounds of directecanegiven pointwise.
However, note that the cone orderon Rf does not in general coincide with the point-
wise order, because fgrC g, we must have that — f is not only non-negative, but also
monotone.

2.6 Continuous normed cones
We recall some additional concepts from domain theory [2].

Definition (Continuous dcpo)If w,v are elements of a dcpb, we say thatw is way
beloww, or in symbolsw < v, if for any directed setl with v C \/4, there exists some
a € Asuchthat C a. We writefv = {w | w < v} andfv = {w | v < w}. A dcpo
D is calledcontinuousf for everyv € D, the setlv is directed and = \f|.v.

Definition (Continuous normed coneA continuous normed coris a complete normed
cone whose unit ideal is a continuous dcpo.

Remark.If V' is a complete normed cone, th&his continuous iff for every € V, the
setlv is directed and = \fLv in V. In particular, continuity, as a property of complete
normed cones, is independent of the norm; it only dependseorder.

2.7 Examples

Example2.7. The complete coneR,, R}, P, {~, and/; from Examples 2.3 and 2.5
are all continuous. IR, we haver <« yiff + = 0 orz < y. In R}, we have
(T1,...,2n) < (Y1,...,yn) iffforall ¢, z;, =0o0rz; <y, InP,, we haved <« B iff
forallv € C*, v*Av = 0 orv* Av < v*Bwv. In{,, and{y, we haver < 7 iff Zis finitely
supported and for all z; = 0 orz; < y;. Moreover, ifVy, ..., V,, are continuous normed
cones,thensoarg @ ... ¢ V,, andV; & ... & V,,, and the way-below relation is given
pointwise in this case.

Example2.8. Let I = [0, 1] be the unit interval with the natural order. Consider the
complete con@ﬁ’r of monotone functiong : I — R (see Example 2.6). We claim that
R! is nota continuous cone. Indeed, consider the gfap = z, and suppose thgt < g.

We will show thatf = 0. We first show that for any € I, there exists a neighborhood of
xz on whichf is constant. Fixe € I. For anye > 0, defineg. by

Y ify<z—e
gely) =< z—€¢ fz—e<y<az+te
y—2¢ ifxt+e<y.



Then the netg.).~o converges tg. Hencef C ¢, for somee > 0. Sinceg, is constant
on a neighborhood af, and bothf andg. — f are monotone, it follows thaf is also
constant on a neighborhoodof As = was arbitrary, and is connected, it follows that

is a constant function, hence necessafily:- 0. As there is only one element way below
g, it follows thatRﬂr is not a continuous cone.

Open Problem. Characterize the partially ordered sétfor which RY is a continuous
normed cone.

2.8 Order convergence and norm convergence

We have already remarked that, in the theory of normed comespormally consider
convergence with respect to the order, and not with respeittet norm. However, it is
sometimes useful to know more about the relationship betileztwo concepts.

Remark.Order-convergence does not in general imply norm-convesgdor instance, in
!+, the increasing sequenocg = (1,1,...,1,0,0,...) has least upper bourid, 1, . . .),
but it does not converge in norm.

On the other hand, norm-convergence of increasing seqaémgdies order-conver-
gence, as shown in the following lemma:

Lemma 2.9. Let V be a complete normed cong;;); an increasing sequence (or a di-
rected net), and let be an upper bound such thit — v;|| — 0. Thenv = \/,v;.

Proof. By completeness, a least upper bound exists, so let\f,v;. Sincev is an upper
bound, we havev T v. Now for all ¢, we havev; C w, hencev — w C v — v;, hence
|lv —w| < |lv—w;|. As the latter quantity converges@we must havélv — w|| = 0,
hencev = w.

2.9 Bounded and non-expanding functions

Definition (Bounded and non-expanding linear functiomet IV and W be complete
normed cones. A linear function of congs: V — W is boundedif there exists a
constanic € Ry such that for alb € V, || f(v)]| < cllv]|. Itis non-expandingf for all
veV,[[f@)l < vl

Perhaps surprisingly, the definition of boundedness ismédnt, as the following
lemma shows:

Lemma 2.10. Any monotone function satisfyiffig\v) = Af(v) (and therefore any linear
function) between complete normed cones is bounded.

Proof. Supposef : V. — W is monotone but unbounded. For edckhoose an element
v; € V such that|v;|| = 1 but||f(v;)|| > 4 - 2" Now consider the sequence whatie

elementis
1 1 1
ui:vo—i-ivl—i-zvg—i—...—i—?vi.

Then (u;); is an increasing sequence ¥y with ||u;|| < 2 for all i. By completeness,
this sequence has a least upper bound \f,u; with ||u| < 2. On the other hand, by



construction, we havéf (u;)|| > ||f(v:)||/2° > i. Now for all i, we haveu; C u, thus
flw) E f(u), thusi < || f(w;)]| < ||f(w)]]. This contradicts the fact thgt{) has finite
norm. O

2.10 Continuous linear functions

Definition (Continous linear function)Let vV andW be complete normed cones. A func-
tion of conesf : V' — W is calledScott-continuougor simplycontinuou}if it preserves
directed suprema, i.e., fi(\;a;) = \/. f(a;) for all bounded directed nets;);.

Example2.11 Consider/, as in Example 2.5, and léf be an ultrafilter onN. For
any sequence = (z;); € {~, definelimy z to be the supremum of all € R such
that{i | x; > a} € U. Then the functionf(z) = limy z is linear (and thus bounded
by Lemma 2.10), but not continuous: it maps each member ofnitreasing sequence
v; =(1,1,...,1,0,0,...) to 0, but maps its least upper boundito

Lemma 2.12. In a complete normed cone, addition and scalar multiplizatare contin-
uous.

Proof. Note that for any fixed, the functionf (v) = a + v is an order isomorphism from
Vito{u € V| a C u}; hence, it preserves least upper bounds of non-empty sigtse S
Scott continuity is pointwise, addition as a function of targuments is also continuous.
Similarly, for any non-zero scalax, the functiong(v) = Av is an order isomorphism
from V to itself, thus preserving least upper bounds. In case 0, there is nothing to
show. Thus\wv is continuous as a function ef Finally, the fact that\v is continuous
as a function of\ follows from Lemma 2.9, because = \f,\; implies | A\v — \v|| =

[A = Ail[lvll = 0. o

2.11 Properties of the way-below relation

Recall that a subséf of a dcpoD is calledScott-openor simplyopen if it is up-closed
and for any directed set with \fA € U, there exists some < ANU. A setisScott-closed
or closedif its complement is open.

Remark2.13 If D is a continuous dcpo, thdih C D is Scott-open if and only if for all
v € U there exists some € U with w < v.

One of the fundamental properties of continuous dcpo’sasatiowing interpolation
property, which is proved e.g. in [2]:

Lemma 2.14(Interpolation) Given elements,, ..., v, andw in a continuous dcpd’,
such thaty; < w for all 7, there exist® € V such thaty; < v < w for all 7.

The following corollary is an easy consequence of interjarta
Corollary 2.15. In a continuous dcp®, the setfv is open, for allv.

In general, the way-below relation is not preserved by cattus functions on cones.
For example, iR}, we haved < 1, butl < 2; thus the functiorf (z) = 1 + = does not
preserve the way-below relation. We do, however, have th@iing properties:



Lemma 2.16.1n a complete cone;, < v" andw < w’ impliesv+w < v’ +w'. Further
v < v implieshv < \v’ for any scalarh € Ry.

Proof. For the first claim, assume < v andw < w’, and consider a directed net
(ai)ier such that’ + w' C \f;c;a;. Thenv' T \f;c ai, hence there exists somjec 1
such thaty C a;. LetJ = {i € I |i > j}. Sincel is directed, we hav&f,. ;a; =
\fielai' Furtherv C q; for all ¢ € J, so we may consider the nét; — v);c;. We have
w v +w —vE (Meyai) —v =\, (a; —v). Sincew < w', there is some € .J
with w C a; — v, thusv + w C q;, as desired. For the second claim, note that \v
defines an order isomorphismif> 0, and there is nothing to show if= 0. O

Corollary 2.17.  (a) Ifv < v’ andw < ', thendv + (1 — M)w < A’ + (1 — A)w'.
(b) Foranyv, the setfv is convex.
(c) In a continuous cone, the convex closure of an open sgts.o

Proof. (a) is immediate from Lemma 2.16. (b) follows from (a) by takiv = w. (c)
follows from (a) and Remark 2.13. a

3 Some properties of continuous normed cones

3.1 A separation theorem

Definition (Generating set)Let V be an abstract cone, and BtC V' be a down-closed,
convex subset. We say thBtgenerated/ if for all v € V, there exists somg > 0 such
that\v € B.

Theorem 3.1 (Separation) Let V' be a continuous normed cone, and Btand U be
convex sets such th&tis down-closed] is up-closed and open, a@inU = ). Further,
assume thaB generated’. Then there exists a continuous linear functipn V- — R
such thatf(v) < 1forallv € Band f(u) > 1forallu € U.

Let M be the collection of subseld C V' with the following propertiesM is convex
and openlJ € M, andB N M = (). Clearly,U € M, andM is closed under unions of
increasing chains. Therefore, by Zorn’s Lemma, there ggishaximal elemenit/, € M.

Lemma 3.2. The complement d¥/, is convex.

Proof. We use the following convention: for scalakse [0,1], we write A = 1 — \.
Let M§ = V \ My, and assume that/§ is not convex. Then there existv’ € Mg
and\ € [0,1] such that” = v + \v' € My. Now sinceV is a continuous normed
cone, we have = \/Lv andv’ = \/Lv’, and hence, by continuity of addition and scalar
multiplication,v” = \{{\a + A’ | a < v anda’ < v'}. By openness oy, there exist

a < vanda’ < v' with A\a + \a’ € M. By Corollary 2.15, the seta is open. LetM’

be the convex closure dfa U My. SinceM’ is open (by Corollary 2.17(c)) and convex,
it must intersecB by maximality of M. Letb € BN M'. Thenb = uu + wm for some

u € fa, m € My, andp € [0,1]. SinceB is down-closed and C u, it follows that



pa +pmm € B. For symmetric reasons, there exists € M, andv,7 € R, such that
v+ 7 =1andva’ +7m’ € B. Note that\, \, 1, v # 0. Now consider the point

Av _ X,u ’ =
w = ———(Wua+pm)—+ —(va +vm
)\I/—F)\M(M pim) /\V—i-/\u( B )
= aied (Aa + Aa’) + AVl m Auw m’
AV + Ap AV + Ap A+ Ap

By constructiony is a convex linear combination gl + zm € B andva’ +7m’ € B,
and thereforew € B. On the other handy is a convex linear combination of + \a’ €
My, m € My, andm’ € My, and thereforev € My, a contradiction. O

Proof of Theorem 3.1:If A is a subset of a cone ande R, we write AA = {Aa | a €
A}. Note thatA is convex iff for all A, p > 0, AA + pA C (A + p)A. We define
f:V = R, as follows:

f(v) =inf{A>0]ve M}

Note that becausB generated’, for all v there exists somg > 0 such that\v € B, thus
Mv € M§. Thus, f(v) is well-defined and finite. We note thak > 0 | v € AM§} is an
up-closed subset @& . SinceB C Mg, it follows that f(v) < 1 for all v € B. On the
other hand, ifu € U, thenu € My, henceu ¢ 1M§; thus f(u) > 1. It remains to be
shown thatf is linear and continuous.

First, we show thaf is monotone; this follows directly from its definition andetfact
that M/§ is down-closed. Also immediate is the fact thfdt\v) = Af(v). The inequality
flv+w) < f(v) + f(w) follows from the convexity of\/§.

To prove the converse inequalitf(v) + f(w) < f(v + w), we consider two cases.
If f(v) = 0or f(w) = 0, then this inequality follows from monotonicity. Otherwis
supposef (v), f(w) # 0. Consider any, 1 > 0 such that\ < f(v) andp < f(w). Then
by definition of f, we havev ¢ AM§ andw ¢ pM§, hencev € AMy andw € pM,.
Convexity of M implies thatv + w € (A + )Mo, hence\ + 1 < f(v + w). SinceA, p
were arbitrary, this showg(v) + f(w) < f(v + w).

Finally, to show thatf is continuous, consider a directed rfet); with least upper
bounda = \f,a;. Letu = \/, f(a;). Then by monotonicityy < f(a); we want to show
equality. Assume, on the contrary, thak f(a). Choose\ such thau < A < f(a). By
definition of f (a), a € AM¢, thusa € AMy. SincelM is open, we have somg € AM,,
thusA < f(a;) < u, a contradiction. O

3.2 A Hahn-Banach style theorem

An important application of the separation theorem is tHeWing Hahn-Banach style
theorem for continuous normed cones:

Theorem 3.3. Let V' be a continuous normed cone, anddet V with ||a|| > 1. Then
there exists a continuous linear functigh: V' — R with f(v) < |jv||, forall v € V,
such thatf (a) > 1.
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Proof. Since the norm is continuous, we can find sarthe< a such that|a’|| > 1. Now
apply the separation theorem to the sBts- {v € V' | |jv|| < 1} andU = $d’.

Remark. One might ask whether the functighin Theorem 3.3 can be chosen so that
f(a) = ||la]|. Contrary to basic intuitions, this is not in general poksibnless one gives
up the continuity off. Consider the following counterexample. Llét= /., the set of
bounded sequences i, with the supremum norm (see Examples 2.5 and 2.7). Note
that every sequencde:;); € V is a directed supremum of finitely supported sequences;
therefore, every continuous linear function is uniquelyedmined by its action on the
standard basis vectoes = (0;;); € V. Now leta = (a;); wherea; = 2 — %
Then|la|| = sup a; = 2. However, we claim that there exists no continuous function
f:V = Ry with f(v) < |lv||, forallv € V, such thatf(a) = 2. For assume that there
was such a functioifi. For everyi, letv; = a + iJ%lel- € V. Thenf(v;) 2 f(a) = 2, but
alsof(v;) < ||lvi]| = 2, hencef(v;) = f(a) + H%f(ei) = 2. Butalsof(a) = 2, which
implies thatf (e;) = 0 for all <. Sincef is uniquely determined by all th&(e;), it follows
that f = 0, a contradiction.

4 Completely positive maps and superoperators

Categories of completely positive maps and superoperatatg naturally in the seman-
tics of quantum programming languages, see [8]. In thisi@ectve briefly recall the

definition of these concepts. The category of superoper&aymmetric monoidal, but
it lacks closed structure. Thus, it forms a useful semamtidgst-order, but not higher-
order quantum programming languages. In Sections 5 and @jlidiscuss two different

x-autonomous categories derived from the category of speeators.

4.1 Signatures, linear maps, and the category V

Definition (Signature, matrix tuple)A signatureis a finite sequence = n,...,n, of
positive natural numbers, whese> 0. If n is a positive natural number, 18}, = C"*" be
the set of complex x n-matrices, regarded as a complex vector space. More gbneral
if o = ni1,...,nsiS a signature, le¥, = V,,, x ... x V,,_ be the set ofmatrix tuples
(A1,...,As), whereA; € C™ix™,

Definition (The category). The category/ has signatures as objects, and a morphism
from o to 7 is a complex linear functiotf : V,, — V..

Note that the category is equivalent to the category of finite dimensional complex
vector spaces; we have defined the objects in a special waubeaeve will equip them
with additional structure later.

Let o & ¢’ denote concatenation of signatures. The® o’ is a biproduct in the
categoryV, with the obvious projection and injection maps. The ndwuhbgect for this
biproduct is the empty signature, which we denoté.as

The tensor product of two signatures= n1,...,ns andr = myq,...,m, is defined
as

OQT =N1M1,y. .., NIMyy ooy Mg, ..., NgMy.
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Note that there is a canonical isomorphispy- = V, ® V., whereV, ® V, denotes the
usual tensor product of vector spaces. With this identificathe operatiom® is seen to
give rise to a symmetric monoidal structure \dn The unit for this tensor product is the
signaturd = 1.

Moreover, there is a canonical natural isomorphismV(c ® 7,p) = V(0,7 ® p)
[8]. Therefore, the category, just like the category of finite dimensional vector spaces,
is compact closed with —o 7 = 0 ® T and_L = | = 1. As a matter of fact, the category
V is even strongly compact closed in the sense of Abramsky aedke [1].

4.2 Completely positive maps and the category CPM

For a positive natural number, let P,, C V,, be the set of hermitian positive x n-
matrices as in Example 2.1. More generally, for any sigmedue nq, ..., ng, let P, =
Pn, x ... x Pp, CV, be the set of hermitian positive matrix tuples.

Definition (Completely positive map)Leto, o’ be signatures. A linear functiofi: V, —
V, is positiveif for all A € P,,, one hasf(A) € P,. Further, we say that is completely
positiveifid, ® F' : Vg, — Vrgo IS positive for all signatures.

. . . ab ac) .
Example4.1 The linear functionf : Vo — V5, defined byf cal = o4 is
positive, but not completely positive. To see this, note thanaps hermitian positive
matrices to hermitian positive matrices, buf @ f does not; for instance,

10‘01 10‘00
. 0 0|0 0 00|10
i@ fl o100 |= |0 1700

100 1 0 0|0 1

On the other hand, the functi@‘( Z Z ) = ( 8 2 > is completely positive.

Definition (The categorfCPM). The categonfCPM of completely positive maps has the
same objects ag, and has the completely positive maps as morphisms.

Lemma 4.2. CPMis a subcategory o, and it inherits the biproducts and (strongly)
compact closed structure frokh. a

Remark.The categorfCPM was calledW in [8].

4.3 Superoperators and the category Q

Leto =nq,...,ns beasignature, and let = (4,,..., A,) € V, be atuple of matrices.
We define thdraceof A to the sum of the traces of4, ..., A;:

trA=> tra,.

Definition (Superoperator)Let o, ¢’ be signatures. A linear functiof: V,, — V. is
called asuperoperatoif f is completely positive and forall € P,, tr f(A) < tr A.

12



Definition (The categor®). The category of superoperators has the same object as
andCPM, and has the superoperators as morphisms.

Lemma 4.3. Qis a subcategory oCPM. It inherits coproducts and the symmetric
monoidal structure fron€PM, but it fails to have products and it is not monoidal closed.
O

The reason the catego@ fails to inherit the products fror@PM is that the diagonal
mapf : o — o @ o with f(A) = (4, A) is trace increasing, and thus not a superoperator.
The fact thaQ is not monoidal closed follows from the characterizatiosferoperators
in [8, Thm. 6.7]; it is easily seen that the hom-&gw, 7) is not in one-to-one correspon-
dence withQ(l, p) for any p.

However, the categor@ also has some additional structure which is not present in
CPM: it is dcpo-enriched, and consequently, it possesses adramnoidal structure
for the coproductsp (see [6, Ch. 7]). This structure can be used to interpretdcom
recursion in first-order functional quantum programmingglaages; for details, see [8,
Thm. 6.7].

5 Normed matrix spaces

Our goal is to find anonoidal closedategory which contains the categ@y preferably

as a full subcategory. In this section, we will describe oppraach to defining such a
category, which we cal)’. The idea is very simple: in the definition of a superopetator
replace the “trace” on each object by an arbitrary norm.

5.1 The category Q

Definition (Normed matrix space)A normed matrix space a pairV. = (o, | —||v),
whereo is a signature an¢l—||, is @ norm on the con®,. We sometimes also call
a normed matrix space @ncrete congand we often identify it with the “underlying”
normed conéP,, ||—||v). We also often writéPy for P,, and similarlyDy for the unit
ideal.

Definition (The categoryQ’). The categoryQ’ has as its objects normed matrix spaces
V = (o,||—|lv). Amorphism fromV = (o, ||—||v) to W = (7, || —|lw) is a completely
positive mapf : V,, — V, which is norm-non-increasing, i.e., which satisfigg A) || <
||A]|v forall A € P,.

Remark. SinceP, is a finite dimensional cone (i.e., embeddable in a finite disranal
vector space) and satisfies certain other regularity cimmditone can show thany norm
||=| in the sense of Section 2.3 is automatically Scott-contisuand make®, into a
continuous normed cone. Similarly, any linear map of cghe®, — P, is automatically
continuous. Thus, the results of Sections 2 and 3, and iricpkat the Hahn-Banach
theorem, apply in this setting, even though continuity neetbe stated explicitly as an
axiom. These observations tend to simplify proofs in thedidimensional case.
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5.2 Boundedness.

The following property of normed matrix spaces will be usatgt. It only holds in the
finite dimensional case.

Lemma 5.1 (Boundedness)LetV = (o, ||—[|v) be a normed matrix space. Then the
unit ideal is bounded bx some element, i.e., there edistsP, such that for allA € P,,
[[A]lv < 1impliesA C A. d

Proof. On P,, the tracef(A) = tr A is a linear function, thus by Lemma 2.10, there
exists a constantsuch that trdA < c||A||v, for all A. Since the largest eigenvalue of any
component of the matrix tupld is bounded by the trace of, we haveA C [, for all A
with tr A < 1, wherel, is the tuple consisting of identity matrices. We can therefet
A=cl,. O

5.3 Properties of the category Q

The categon®’ containsQ as a full subcategory. Indeed, to each objecf Q, we can
associate an objeét, |||} of Q’, where||A||yx = tr A is thetrace norm It is then clear
that the morphisms between these objects are precisely dics

The categon@’ also inherits products, coproducts, and a symmetric maholdsed
structure from the categoyPM, as we will now show. The structure is preserved by the
forgetful functorQ’ — CPM.

5.3.1 Coproducts and products.

Given two normed matrix spac&s= (o, |—||v) andW = (7, ||—||w), we define

VeWw = (car|-llvew),
V&W = (oot |-llvew),

where| (A, B)llvew = [[Allv + [|Bllw and (A, B)|lvew = [[Allv U[|Bllw as in
Example 2.3. Recall thatf” denotes the binary “maximum” operation on real numbers.
It is easy to verify that with these normig,& W is a coproduct an®” & W is a product

in the categoryQ’. Further, the objed, with the empty signature and the unique norm,
serves as the neutral object for the coproducts and prad¥etsummarize:

Lemma 5.2. The categor®’ has finite coproducts and products. The initial and terminal
objects coincide.

Remark. Just like the categor®, the categonyQ’ is also dcpo-enriched, and hence the
coproduct operatios possesses a traced structure.

5.3.2 Symmetric monoidal structure.

Given normed matrix spacé$é = (o, ||—||v) andW = (7, |—||w), we would like to
define their tensor product

VeW = (a7 |-llvew).
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The question is how to define the nofim|| ¢ w . By analogy with normed vector spaces,
it would seem that the following definition is an obvious calade, forC € Py gw:

HC”V®W = mf{Z HAzHVHBzHW | C = ZAl (9 Bi, WhereAi € Py, B; € Pw}
(1)

However, there is a problem with this definition: the set avhich the infimum is taken
may in general be empty. In other words, not every elemef gfy, can be written of the
form )", A; ® B;, whereA; € Py andB; € Py . This is best illustrated in an example,
wheres = 7 = 2.

Examples.3. The matrix

C:

= O O
SO OO

0
0
0
0

= O O

cannot be written in the fory, A; ® B;, for positive2 x 2-matricesA;, B;. To see why
this is not possible, suppose it could be written in this vildyen the blockwise transpose

ZAZ'@)B;T:

S OO
o= OO
oo~ O
O OO

would also have to be positive, which it is not. O

Remark. The phenomenon described in the previous example is wellvkrin physics.

A density matrixC' € Pygw of a bipartite quantum system can be written in the form
>, A;® B; if and only if it is entanglement freavhich means that there are omlassical
probabilistic correlations between the two parts. Such a state can berptepsing only
classical communication.

In order to arrive at a useful definition of the tensor normyattpn (1) must be mod-
ified in some suitable way. One natural modification, whicidie to ax-autonomous
structure, is to replace=" by “C” in the right-hand-side of the equation. We obtain the
following:

Definition (Tensor product, tensor normisiven normed matrix spacés = (o, ||—||v)
andW = (7, ||—|lw), their tensor product is defined 82 W = (0 ® 7, |—|lvew),
where for allC € P,g-,

ICIlvew = inf{z | A:llvIBillw | C C ZAZ' ® B;, whereA; € Py, B; € Pw}.
(2
Lemma5.4. || —|lvgw is a norm onP,g.

Proof. Three of the axiomd|C' + C’|| < ||IC|| + [|IC’|I, |AC]| = A||C]|, andC T C" =
[C] < [|[C”]], follow immediately from the definition. To show the remaigiproperty,
IC] = 0= C =0, weuse Lemma5.1. Let € Py andB € Py as in Lemma 5.1,
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and assumgC|lvgw = 0. Then for anye > 0, there exists somel;, B; such that
S 1Aillv[IBillw < eandC C 37, A; @ B;. ThenA; C || A;[lvAandB; C || Billv B,
thusC C >, A; ® B; C >, || Aillv || Bi |lwA® B C eA ® B. Since this holds for all
e > 0, we must have? = 0. d

5.3.3 Properties of the tensor norm

The definition of the tensor norm in terms of equation (2) temimpractical to work with.
The following is a more practical characterization of thesr norm in terms of its unit
ideal.

Lemma 5.5. The unitidealDy gy of V ® W is the smallest Scott-closed, down-closed,
convex set containin®y ® Dw = {A® B | A€ Dy,B € Dy }.

Proof. Let I be the smallest Scott-closed, down-closed, convex seairong Dy ® Dy,
and letD = {C € P,g: | |Cllvew < 1}. We claim thatl = D. To provel C D,
it suffices to show thaD is Scott-closed, down-closed, convex, abgt ® Dy C D.
As the unit ideal of a complete normed corieautomatically possesses the three closure
properties; furtheDy ® Dy C D follows directly from the definition oD.

Conversely, to prov® C I, letC € D, so that|C||yew < 1. Lete > 0 be arbitrary.
By definition of ||C||vew, there existd; € Py, B; € Py suchthatC C )", A, ® B;
and) . |Ai[|v||Billw < 1+e. Leta; = [|A;]|v andb; = || B;|lw, and assume without
loss of generality that,,b; # 0 (or else dropi from the sum). Therﬂ

[ $llw = 1, henceqt ® £ € Dy ® DW It follows thaty>, 1 e lbz(“‘—j ® g el,
becausd is convexO e I, andz + ——a;b; < 1. Therefore -C €I, becausd is
down-closed. Since this holds for alt> 0, andI is Scott- closed |t follows that € 1.00

Lemma 5.5 is usually applied in the form of the following clbaoy, which can be used
to prove that agiven map: V @ W — U is norm-non-increasing.

Corollary 5.6. LetV = (o, ||—|lv), W = (7, ||—|lw), andU = {p, ||—||v) be normed
matrix spaces, and lef : V, ® V;, — V, be a completely positive map. To prove tifat
is norm-non-increasing, it suffices to show thjg{A @ B)||y < 1forall A € Py and
B € Py such that| A||y < 1and|B|lw < 1.

Proof. Consider the inverse image bf; underf. Sincef is linear, monotone, and Scott-
continuous, and)y is convex, down-closed, and Scott-closed, it follows thatinverse
image has these properties as well. Moreover, under the gigsumptions, the inverse
image containdy ® Dy,. Therefore, by Lemma 5.5, it contaid®y ¢ ; hencef is
norm-non-increasing. a

Ouir first application of Corollary 5.6 is to prove that the oggn V' ® W on the
categoryQ’ is bifunctorial.

Lemma 5.7. Let V, V', W, W’ be normed matrix spaces, and |gt: V — V' andyg :
W — W’ be completely positive, norm-non-increasing functioenf @ g : VoV’ —
W & W' is also completely positive and norm-non-increasing.
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Proof. We already know thaf @ ¢ is completely positive; we must show that it is norm-
non-increasing. But by Corollary 5.6, it suffices to tesstfar elementsd ® B, where
[Allvy < 1 and|Bllw < 1. Butin this case, we havg(f ® g)(A ® B)||lvew: =
1F(A) @ g(B)llvew <If(AllvlgB)llw: < [|Allv]Blw < 1. o

Because the tensor product is preserved by the faithfutéu@ — CPM, we already
know that all the required equations are satisfied to mak&o a bifunctor.

One may similarly use Corollary 5.6 to check that the carar@ssociativity, symme-
try, and unitisomorphismd ® (B®C) = (A®B)®C), AQ B~ B A, andA®| = A,
which are known from the catego@PM, are norm-non-increasing; thus, they exist in the
categoryQ’. Herel = (1,|—|)) is the tensor unit, whergz||, = z onV; = R,. We
summarize:

Lemma 5.8. The categon®’ is symmetric monoidal.

5.3.4 Monoidal closed structure

Recall from Section 4.2 that the categ@¥®M is compact closed with —o7 = c®@ 7. We
can lift this to a monoidal closed structure @. In the following definition, we identify
a completely positive map : V, — V. with an element of/, s, in the standard way, see
[8, Sec. 6.7].

Definition (Monoidal closure) Given normed matrix spacés = (o, ||—||v) andW =
(1, ||=|lw), their function space is defined §— W = (¢ ® 7, ||—||v—ow), Where for
all f € Pyor,

[fllv—ow = supf[lf(Allw | Al <1}. @)

This is the usual definition of an operator norm; note thatol@aness (Lemma 2.10)
guarantees that the supremum in equation (3) always eXistsproperties of a norm are
easily verified, so that” —o W is a well-defined space. To prove that this indeed yields
the correct monoidal closed structure corresponding tdehsor produck, we need to
prove the following:

Lemma 5.9. For normed matrix space®, W, andU, a completely positive map :
V ® W — U is norm-non-increasing if and only if its adjoiftf : V. — W — U is
norm-non-increasing.

Proof. Supposef is norm-non-increasing, and considére Py with ||Ally < 1. To
show that]| fT(A)||w v < 1, take B € Py with ||B|lw < 1. Then||fT(A)(B)|lv =
lf(A® B)||lv < ||A® B|lvew < 1, sofTis norm-non-increasing. Conversely, assume
f1 is norm-non-increasing. To show thAtis norm-non-increasing, by Corollary 5.6, it
sufficesto prové f(A ® B)||y < 1forall A, B suchthaf|Ally < 1and||B||w < 1. But
then||f(A @ B)llv = |f1(A)B)v < I (Allw-vBllw < [Allv]Bllw < 1. O

We summarize:

Lemma 5.10. The categon®’ is symmetric monoidal closed.
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5.3.5 Thex-autonomous structure

A x-autonomous category is a symmetric monoidal closed categith an objectL, such
that the canonical natural morphism— (V' — 1) —o L is an isomorphism [3, 4]. The
object L is called adualizing objectIt is common to write/ - =V —o 1.

Lemma 5.11. In the categonyQ’, the objectL := | is a dualizing object.

Proof. LetV = (o, ||—||v) be a normed matrix space. We already know that the canonical
morphism : V — (V—_1)—o Ll isanisomorphismin the category of completely positive
maps. It remains to be shown that its inverse is norm-noreasing, or equivalently, that

d is norm-non-decreasing. So ldt € P, with ||A||y > 1. It suffices to show that
[l6(A)|| > 1. By the Hahn-Banach theorem (Theorem 3.3) there existseadifunction
f:V = Ry with f(B) < ||B|v for all B, and such thaf(A) > 1. Thenf e V — L

and|| fllv . < 1, hence|6(A)[| = [[6(A)(H)][L = [[f(A)llL = f(A) > 1. o

Thus, we have:

Proposition 5.12. The categon®@’ of normed matrix spaces isautonomous with finite
products and coproducts and a zero object.

5.4 Why Q is not a model of higher-order quantum computation

The construction of the catego®/ was motivated by the search for a semantics of higher-
order quantum computation, extending the semantics ofdidgr quantum computation
given in [8]. It almost seems like this goal has been accashpli: we have obtained a
categoryQ’ which is x-autonomous and which also contains the cate@pof first-order
guantum computations as a full subcategory. However, tiseadatal problem: The full
embedding of) in Q' does not preserve the tensor product. We illustrate thelgmon

an example:

Examples.13 Consider the normed matrix spae= W = (2, ||—||«) of 2 x 2-matrices
with the trace norm. This space lies within the image of théedding ofQ in Q’.
Consider the spadé @ W with the norm||—||yvgw , as defined by equation (2). We claim
that the norm o/ @ W is not the trace norm, and thds® W does not lie within the
image ofQ in Q'. Let

C:

= O o
OO O
[enJenllan R an]
= OO

as in Example 5.3. We claim tha€||vgw = 4. Indeed, it is easy to see that

ce(38)=(50)+(52)=(31)

hence||C|lvew < 4 by definition. To see thatC||vgw > 4, consider the dual space
v+, fora2 x 2-matrix B, || By is the maximal eigenvalue d¢. Since this is bounded
by the trace of3, the “identity” functionf : V — V' is norm-non-increasing. Therefore,
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by Lemma 5.9, its adjoing : V ® V' — L is also norm-non-increasing; it maps & 4-
matrix (a;;) t0 ago + aos + aso + ass. Itfollows that||C||vew > [|g(C)||L = g(C) = 4,
as claimed. On the other hand, the trace norm’ofould be2, and thereforé|C||y & tr
and||C||« do not coincide.

6 Quantum coherent spaces

Girard introduced quantum coherent spaces as a new modeleaf llogic, inspired by
guantum theory [5]. Quantum coherent spaces are closeyetelo spaces of density
matrices, and they also formxaautonomous category. Thus, one might ask whether they
are suitable as a model for higher-order quantum computatide will briefly sketch
the definition of a version of quantum coherent spaces, addptthe terminology of the
present paper. We will also point out why they do not form a eiddr higher-order
guantum computation.

The definitions given here differ from those of [5] in sevedatails. For instance,
we view quantum coherent spaces as certain normed coneseagh®irard axiomatizes
them directly in terms of their unit ideals. Also, we work vgtrict cones, whereas Girard
allows non-strict cones, where the cone order is only a per@nd its induced equivalence
relation must be factored out. Finally, we work with spacésnatrix tuples whereas
Girard works with spaces of matrices only (expressing matmples, in effect, as block
diagonal matrices). A formal proof of the equivalence of definitions with Girard’s is
not within the scope of this paper, and will be given elsewher

6.1 Tensor product, revisited

To motivate the definition of quantum coherent spaces, sdenthe problem from Sec-
tion 5.4: if V, W are spaces i@, then the norm oV ® W in the categorie€ andQ’
does not coincide. Just like the problem with equation i}, problem can be attributed
to the presence of elementslih® W which are not of the forn} ", A; ® B;; indeed, it is
easy to check that for elements of the latter form, the twonsadto indeed coincide.

It therefore seems natural to change the definition of theaieproduct by simply
removing the troublesome elements. This is precisely wiiantym coherent spaces
achieve. Informally, the tensor product®Bf and?P; is not taken to bé, 5, but only a
certainsubsetk C P,g-, Namely, the subset consisting precisely of the elementseof
form )", A, ® B;. The setsRk propagate to higher types. Thus, a quantum coherent space
is a triple(o, R, ||—||) of a signature, a conB C V,, and a norm which makeR into a
continuous normed cone. The formal definition follows in tiest subsection.

One important feature of the category of quantum cohereattespis that, unlike the
categoryQ’ of the previous section, it is not based on completely pasithaps, but on
all positivemaps. Informally speaking, this is because one has “redubedsize of the
tensor product, and thus one has to “increase” the size ditiwtion spaces to keep the
symmetric monoidal closed structure.
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6.2 The category QCS

Definition (Quantum coherent space (adapted from [5)quantum coherent spaiga
triple V = (o, Ry, ||—|lv), whereo is a signatureRy C V, is a cone, andl—||v is a
norm makingRy into a continuous normed cone.

Definition (The categonQCS). The categonQCS has quantum coherent spaces as ob-
jects. A morphism fronl/ = (o, Ry, ||—|lv) to W = (7, Rw,||—|lw) is any linear,
norm-non-increasing map of congs Ry — Ry .

The category of quantum coherent spaces possessesitbnomous structure with

finite coproducts and products, given as follows: For= (o, Ry, |—|v) andW =
<7—7RW7H_HW>’

VeWwW = (c&7, Ry X Rw,|—llvew),

V&W = {(o®T7, Ry X Rw,||—|lvew),

VoW = (c®7, Ry ®Rw,|—llvew),

VoW = (6®T7,Ry —Rw,|—|lv_ow).

Here,||—|lvgw and||—||v ¢ w are defined as in Section 5.3.1. The tensor cone is defined
asR, ® Rw = {> ,c; Ai ® B; | A; € Ry, B; € Rw}, wherel ranges over possibly
infinite index sets such that the given sum converges. Ttsatarorm||—||vgw is defined

as in equation (2), except of course that we Bseand Ry in place of Py andPy, . The
function space con&y —o Ryy is the set of all continuous linear functions fraRy, to

Ry, and||—||v —ow is the operator norm. The dualizing object is adaia R, .

Remark.Note that a morphism between quantum coherent spaces isglyee morphism
between normed conésy, || —||v) and(Rw, ||—||w); thus, the forgetful functor from
QCSto the category of normed cones is full and faithful. On thHeeothand, every finite
dimensional cone can be embedded in sdethus, the category of quantum coherent
spaces is equivalent to a suitable category of finite dinoer@sicontinuous normed cones.

6.3 Why QCS is not a model of higher-order quantum computatio

Like the categor®’, the categorfQCS of quantum coherent spacesigutonomous, and
therefore it has the required structure for modeling higireler linear functions. There is
also a canonical embedding@finsideQCS, mapping each signatuseto (o, P,, | —||«)-
However, this embedding is not full, because of the presehpesitive, non-completely
positive maps iMQCS. Since it was shown in [8] that the categdpycaptures precisely
the feasible quantum functions at first-order types, itdfae follows thafQCS contains
some ground type morphisms, such as the morplfisrom Example 4.1, which do not
correspond to physically computable functions. On the roftaad, there are physically
feasible density matrices, such as the matfifrom Example 5.3, which do not have a
valid denotation in the categofyCS due to the restricted nature of its tensor cone.
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