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Triple integrals over box domains
I Recall that double integrals are approximated by dividing the domain

of integration into squares and by selecting a sample value within
each square. Similarly a triple integral is approximated by dividing
the domain of integration into cubes and sampling. Smaller cubes
give better approximations and in the limit converge to the true
value of the integral.

I Consider a 3D box domain:

B = [a, b]× [c , d ]× [r , s]

= {(x , y , z) : a ≤ x ≤ b, c ≤ y ≤ d , r ≤ z ≤ s}
I Subdivide the sides of B into n pieces each with

∆x =
b − a

n
, ∆y =

d − c

n
, ∆z =

s − r

n
.

I The resulting cells are cubes

Bijk = [xi−1, xi ]× [yj−1, yj ]× [zk−1, zk ], where

i , j , k = 1, . . . , n are index variables and where

xi = a + i∆x , yj = c + j∆y , zk = r + ∆z .



Approximating 3D integrals

I The volume of each cell is

∆V = ∆x ×∆y ×∆z =
(b − a)(d − c)(f − e)

n3
.

I For each triple (i , j , k) where i , j , k = 1, . . . , n choose a sample point
(xijk , yijk , zijk) ∈ Bijk and form the approximation∫∫∫

B

f (x , y , z)dV ≈
n∑

i,j,k=1

f (xijk , yijk , zijk)∆V .

In the limit, as n→∞ the right side will tend to the value of the
triple integral.



Iterated triple integrals

I Just like double integrals, the value of a triple integrals over a box
domain can be calculated by using a triply iterated integral.

I For domain B = [a, b]x [c , d ]x [r , s] and integrand f (x , y , z) we have

I =

∫∫∫
B

f (x , y , z)dV =

∫ z=s

z=r

(∫ y=d

y=c

(∫ x=b

x=a

f (x , y , z)dx

)
dy

)
dz

I The value of I can, in principle, be calculated by any of the other 6
integrals corresponding to the 6 possible permutations of x , y , z . For
example, using the order z , x , y we have

I =

∫∫∫
B

f (x , y , z)dV =

∫ y=d

y=c

(∫ x=b

x=a

(∫ z=s

z=r

f (x , y , z)dz

)
dx

)
dy



Example 1.
I Calculate the value of I =

∫∫∫
B

xyz2dV where

B = [0, 1]x [−1, 2]x [0, 3].
I Using the order x , y , z , we have

I =

∫ z=3

z=0

∫ y=2

y=−1

∫ x=1

x=0

xyz2dxdydz

=

∫ 3

0

(∫ 2

−1

1

2
yz2dy

)
dz

=

∫ 3

0

3

4
z2dz =

1

4
z3
∣∣∣3
0

=
27

4

I Using the order z , x , y , we have

I =

∫ y=2

y=−1

∫ x=1

x=0

∫ z=3

z=0

xyz2dz dx dy

=

∫ 2

−1

∫ 1

0

(
1

3
xyz3

∣∣∣z=3

z=0

)
dxdy =

∫ 2

−1

∫ 1

0

9xy dx dy

=

∫ 2

−1

9

2
ydy =

9

4
y2
∣∣∣2
−1

= 9− 9

4
=

27

4



The product formula

I The product formula for double integral generalizes readily to triple
integrals. If B = [a, b]× [c , d ]× [r , s] is a box domain, then∫∫∫

B

f (x)g(y)h(z)dV =

∫ b

a

f (t)dt

∫ d

c

g(t)dt

∫ s

r

h(t)dt

I Consider again the integral from Example 1, I =

∫∫∫
B

xyz2dV

where B = [0, 1]x [−1, 2]x [0, 3]. Applying the product formula:

I =

∫ 1

0

xdx

∫ 2

−1

ydy

∫ 3

0

z2dz =
1

2
× 3

2
× 9 =

27

4
.



Triple integrals over general domains.

I Integration over general 3D domains requires that we describe them
in an iterated fashion using a particular ordering of x , y , z .

I A common possibility involves a domain of the form

B = {(x , y , z) : (x , y) ∈ D and g1(x , y) ≤ z ≤ g2(x , y)}

where D is a 2D region in the xy -plane.

I Intuitively, such B may be visualized as a dwelling with a 2D ”floor
plan” D with g2(x , y) the height of the roof and g1(x , y) the depth
of the floor at each point (x , y) ∈ D.

I If D is also non-rectangular, we have to represent it in an iterated
fashion such as

D = {(x , y) : a ≤ x ≤ b, f1(x) ≤ y ≤ f2(y)}



General domains cont.

I Thus, if B can be described using an x , y , z ordering as

B = {(x , y , z) : a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x), g1(x , y) ≤ z ≤ g2(x , y)

then a triple integral

I =

∫∫∫
B

f (x , y , z)dV

can be evaluated as the iterated integral

I =

∫ x=b

x=a

(∫ y=f2(x)

y=f1(x)

(∫ z=g2(x,y)

z=g1(x,y)

f (x , y , z)dz

)
dy

)
dx .

I Other orderings of the variables are possible, but the key principle is
that the order of the variables in the domain description dictates the
variable order in the iterated integral.



Example 2

I Determine the value of the triple integral

I =

∫∫∫
E

zdV

where E is the tetrahedron formed by the origin and the points
(1, 0, 0), (0, 1, 0), (0, 0, 1).

I The projection to the xy plane is the triangle D with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0). The borders of this triangle are the lines
x = 0, y = 0 and x + y = 1.

I The iterated description of the triangle D is therefore

D = {(x , y , 0) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}.



Example 2 cont.

I The “floor” of the tetrahedron is given by the plane z = 0, while the
“ceiling” by the plane x + y + z = 1. Rewriting the last equation as
z = 1− x − y we obtain the following iterated description

E = {(x , y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x , 0 ≤ z ≤ 1− x − y}.

I The triple integral may now be converted to the iterated integral

I =

∫ 1

x=0

∫ y=1−x

y=0

∫ z=1−x−y

z=0

zdzdydx

=

∫ 1

0

∫ 1−x

0

1

2
(1− x − y)2dydx

= −1

6

∫ 1

0

(1− x − y)3
∣∣∣y=1−x

y=0
dx

=
1

6

∫ 1

0

(1− x)3dx = − 1

24
(1− x)4

∣∣∣1
0

=
1

24



Example 3

I Evaluate the triple integral I =

∫∫∫
E

√
x2 + z2dV where E is

bounded by paraboloid y = x2 + z2 and the plane y = 4.

I Projecting onto the xz plane we obtain the disk

D = (x , z) : x2 + z2 ≤ 4}

I The domain of integration may now be described as

E = {(x , y , z) : (x , z) ∈ D, x2 + y2 ≤ y ≤ 4}.

I The integral now becomes

I =

∫∫
D

(∫ y=4

y=x2+z2

√
x2 + z2dy

)
dA

=

∫∫
D

(4− x2 − z2)
√
x2 + z2dA.



Example 3 cont.

I To finish the evalution we switch to polar coordinates
x = r cos θ, z = r sin θ.

I The disk D is now described as

D = {(r , θ) : 0 ≤ r ≤ 2, ; 0 ≤ θ ≤ 2π}.

I Recall also that dA = rdrdθ.

I The integral now reduces to

I =

∫ θ=2pi

θ=0

∫ 2

r=0

(4− r2)r2drdθ

= 2π

[
4

3
r3 − 1

5
r5
]2
0

=
128π

15


