Lecture 2
 Applications of triple integrals

R. Milson
Math 2002, Winter 2020

Outline

- Text: section 15.6
- Volume integrals
- Mass integrals
- Average value and Centre of mass

Volumes as triple integrals

- A triple integral $\iiint_{B} d V$ represents the volume of the 3D region B.
- Example: calculate the volume of the tetrahedron B bounded by the planes $x+2 y+z=2, x=2 y, x=0, z=0$.
- The projection of the above tetrahedron onto the $x y$ plane gives the triangle T bounded by the lines $x=0, x=2 y$, and $x+2 y=2$
- Solving for y gives $y=\frac{x}{2}$ and $y=-\frac{x}{2}+1$. An iterative description of this triangle is therefore

$$
T=\left\{(x, y): 0 \leq x \leq 1, \frac{x}{2} \leq y \leq 1-\frac{x}{2}\right\} .
$$

- Solving for z in the first of the above plane equations gives $z=2-x-2 y$. The iterative description of the tetrahedron is therefore

$$
B=\left\{(x, y, z): 0 \leq x \leq 1, \frac{x}{2} \leq y \leq 1-\frac{x}{2}, 0 \leq z \leq 2-x-2 y\right\} .
$$

Volume example continued.

- The iterative description of the tetrahedron is

$$
B=\left\{(x, y, z): 0 \leq x \leq 1, \frac{x}{2} \leq y \leq 1-\frac{x}{2}, 0 \leq z \leq 2-x-2 y\right\} .
$$

- The volume integral may now be given as

$$
\begin{aligned}
V & =\int_{x=0}^{x=1} \int_{y=x / 2}^{y=1-x / 2} \int_{z=0}^{z=2-x-2 y} d z d y d x \\
& =\int_{0}^{1} \int_{x / 2}^{1-x / 2}(2-x-2 y) d y d x \\
& =\int_{0}^{1}\left[(2-x) y-y^{2}\right]_{y=x / 2}^{y=1-x / 2} d x \\
& =\int_{0}^{1}(2-x)(1-x)-\left(1-\frac{x}{2}\right)^{2}+\frac{x^{2}}{4} d x \\
& =\int_{0}^{1} x^{2}-2 x+1=\frac{1}{3}
\end{aligned}
$$

Mass

- The mass of a 3D solid is given by the triple integral of a given density function over the corresponding domain.
- Example. Find the mass of a solid enclosed by the cylinder $y=x^{2}$ and the planes $z=0$ and $y+z=1$ and density $\rho=y^{2}$.
- The domain in question is

$$
E=\left\{(x, y, z):-1 \leq x \leq 1, x^{2} \leq y \leq 1,0 \leq z \leq 1-y\right\}
$$

- The mass integral is therefore

$$
\begin{aligned}
M & =\int_{x=-1}^{x=1} \int_{y=x^{2}}^{y=1} \int_{z=0}^{z=1-y} y^{2} d z d y d x \\
& =\int_{-1}^{1} \int_{x^{2}}^{1}\left(y^{2}-y^{3}\right) d y d x \\
& =\int_{-1}^{1}\left(\frac{1}{12}-\frac{x^{6}}{3}+\frac{x^{8}}{4}\right) d x=\frac{8}{63}
\end{aligned}
$$

Average Value and Centre of Mass

- If we divide the value of a triple integral by the volume of the region of integration, we obtain the average value of the integrand function in that region.
- The centre of mass of a solid may be determined by calculating the average values of the x, y, z coordinates over the domain in question.
- Example. Let E be the solid bounded by the parabolic cylinder $x=y^{2}$ and the planes $x=z, z=0, x=1$ having unit density. Calculate the centre of mass of this solid.
- The above domain can be described as

$$
E=\left\{(x, y, z):-1 \leq y \leq 1: y^{2} \leq x \leq 1,0 \leq z \leq x\right\}
$$

- The volume is given by

$$
\begin{aligned}
V & =\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} d z d x d y=\int_{-1}^{1} \int_{y^{2}}^{1} x d x d y \\
& =\int_{-1}^{1}\left[x^{2} / 2\right]_{y^{2}}^{1} d y=\int_{-1}^{1}\left(1 / 2-y^{4} / 2\right) d y \\
& =\left[y / 2-y^{5} / 10\right]_{-1}^{1}=1-1 / 5=4 / 5
\end{aligned}
$$

Centre of Mass example cont.

- The average values of the x, y, z coordinates are given by

$$
\begin{aligned}
& \bar{x}=\frac{5}{4} \int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} x d z d x d y \\
& \bar{y}=\frac{5}{4} \int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} y d z d x d y \\
& \bar{z}=\frac{5}{4} \int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} z d z d x d y
\end{aligned}
$$

- We have

$$
\begin{aligned}
\bar{x} & =\frac{5}{4} \int_{-1}^{1} \int_{y^{2}}^{1} x^{2} d x d y=\frac{5}{4} \int_{-1}^{1}\left[x^{3} / 3\right]_{y^{2}}^{1} d y \\
& =\frac{5}{4} \int_{-1}^{1}\left(1 / 3-y^{6} / 3\right) d y=\frac{5}{4} \times \frac{1}{3} \times\left(2-\frac{2}{7}\right)=\frac{5}{7} \\
\bar{z} & =\frac{5}{4} \int_{-1}^{1} \int_{y^{2}}^{1} \frac{x^{2}}{2} d x d y=\frac{5}{14}
\end{aligned}
$$

- By an explicit calculation, or by using the symmetry of the domain, we have $\bar{y}=0$.

