Lecture 3
 Cylindrical Coordinates

R. Milson
Math 2002, Winter 2020

Outline

- Text: section 15.7
- Definition
- Volume scale factor
- Rotational symmetry
- Examples

Definition

- Cylindrical coordinates are an extension of polar coordinates to 3D. We use $r=\sqrt{x^{2}+y^{2}}$ an and $\theta=\tan ^{-1}(y / x)$ to represent the horizontal position, and use z to represent the altitude.
- Here are some examples of surfaces expressed as equations in parabolic coordinates.
- The equation $r=1$ describes an infinite right cylinder of radius 1
- The equation $z=r$ describes a right circular (double) cone.
- Recall that in polar coordinates the 2D area element has a scale factor:

$$
d A=r d r d \theta
$$

It stands to reason that the 3D volume element has the same scale factor:

$$
d V=r d z d r d \theta
$$

Example.

- Example. Consider the region E bounded by the cylinder (walls) $x^{2}+y^{2}=1$, the plane (roof) $z=4$, and the paraboloid (floor) $z=1-x^{2}-y^{2}$
- In Cartesian coordinates we have

$$
E=\left\{(x, y, z): x^{2}+y^{2} \leq 1,1-x^{2}-y^{2} \leq z \leq 4\right\} .
$$

In cylindrical coordinates this simplifies to

$$
E=\left\{(r, \theta, z): 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi, 1-r^{2} \leq z \leq 4\right\}
$$

- Let's calculate the mass of a solid corresponding to E with a density given by $\rho=K r$, where K is a constant. The mass integral is

$$
\begin{aligned}
M & =\iiint_{E} \rho d V=\int_{\theta=0}^{\theta=2 \pi} \int_{r=0}^{r=1} \int_{z=1-r^{2}}^{z=4} \rho r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} K r^{2}\left(4-1+r^{2}\right) d r d \theta \\
& =2 K \pi\left[r^{3}+r^{5} / 5\right]_{0}^{1}=\frac{12}{5} K \pi
\end{aligned}
$$

Rotational symmetry

- An integral where the domain and integrand have axial symmetry are prime candidates for integration in cylindrical coords.
- Indeed, sometimes a difficult iterated integral in Cartesian coordinates can be evaluated by rewriting it as an iterated integral in cylindrical coords.
- Example. Evaluate

$$
I=\int_{x=-2}^{x=2} \int_{y=-\sqrt{4-x^{2}}}^{y=\sqrt{4-x^{2}}} \int_{z=\sqrt{x^{2}+y^{2}}}^{z=2}\left(x^{2}+y^{2}\right) d z d y d x
$$

- We rewrite the above as the triple integral

$$
I=\iiint_{E}\left(x^{2}+y^{2}\right) d V
$$

where

$$
\begin{aligned}
E & =\left\{(x, y, z):-2 \leq x \leq 2,-\sqrt{4-x^{2}} \leq y \leq \sqrt{4-x^{2}}, \sqrt{x^{2}+y^{2}} \leq z \leq 2\right\} \\
& =\left\{(x, y, z): x^{2}+y^{2} \leq 4, \sqrt{x^{2}+y^{2}} \leq z \leq 2\right\}
\end{aligned}
$$

is the region bounded by the right circular cone lying and the plane $z=2$.

Symmetry example cont.

- The above domain has a simplified expression in cylindrical coordinates:

$$
E=\{(r, \theta, z): 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 2, r \leq z \leq 2\}
$$

- Finally, we re-express I as an iterated integral in cylindrical coordinates:

$$
\begin{aligned}
I & =\int_{\theta=0}^{2 \pi} \int_{r=0}^{r=2} \int_{z=r}^{z=2} r^{2} \times r d z d r d \theta \\
& =2 \pi \int_{0}^{2} r^{3}(2-r) d r \\
& =2 \pi\left[\frac{r^{4}}{2}-\frac{r^{5}}{5}\right]_{0}^{2}=\frac{16}{5} \pi
\end{aligned}
$$

