Lecture 4
 Spherical Coordinates

R. Milson
Math 2002, Winter 2020

Outline

- Text: section 15.8
- Longitude and lattitude
- Spherical scale factor
- Examples

Spherical coordinates

- Lattitude $0 \leq \phi \leq \pi$ and longitude $0 \leq \theta \leq 2 \pi$ specify the position of a point on the surface of the earth. In mathematics, it is customary to measure lattitude, not from the equator, but from the north pole.
- We add another variable $\rho \geq 0$ that measures the distance from the origin. Thus, $\rho=k$ is the equation
 of the sphere $x^{2}+y^{2}+z^{2}=k^{2}$
- The relation between spherical and cartesian coordinates is given by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

- To derive the above relations we observe that $z=\rho \cos \phi, r=\rho \sin \phi$, where $r^{2}=x^{2}+y^{2}$ is the distance from the z-axis. Polar and Cartesian coordinates are related by

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

from which the spherical coordinate formulas follow.

Cartesian to Spherical

- The relation between spherical and cartesian coordinates is given by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

- To obtain the inverse formulas that convert Cartesian to spherical coordinates we begin by calculating r, θ in the usual fashion:

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan (y / x), \quad x>0
$$

By definition, we have

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Inverting the equation $z=\rho \cos \phi$ gives

$$
\phi=\arccos (z / \rho)
$$

Example 1

- Calculate the spherical coordinates of the point with Cartesian cordinates ($0,2 \sqrt{3},-2$)
- Answer. In the x, y plane, the point $(0,2 \sqrt{3})$ lies on the border between the 1 st and 2 nd quadrant, and therefore $\theta=\pi / 2$. Note: the formula $\theta=\arctan (y / x)$ does not apply because $x=0$. We then have

$$
\rho=\sqrt{0^{2}+(2 \sqrt{3})^{2}+(-2)^{2}}=\sqrt{12+4}=4
$$

Finally,

$$
\phi=\arccos (z / \rho)=\arccos (-1 / 2)=2 \pi / 3 .
$$

Example 2

- Question: what is the distance between Halifax (44.65 deg N, 63.57 deg W) to Beijing (39.92 deg N, 116.38 deg E)?
- The spherical coordinates of Halifax and Beijing (in radians) are

$$
\begin{array}{ll}
\theta_{1}=\frac{\pi}{180}(360-63.57)=5.174, & \phi_{1}=\frac{\pi}{180}(90-44.65)=0.7915 \\
\theta_{2}=\frac{\pi}{180} 116.38=2.031, & \phi_{2}=\frac{\pi}{180}(90-39.92)=0.8741
\end{array}
$$

- Let's assume that earth is perfect sphere and use $\rho=6370 \mathrm{~km}$ as the radius of the earth. Using the formulas above, the Cartesian coordinates of the two cities are

$$
\begin{aligned}
& \mathbf{u}_{1}=\rho\left\langle\cos \theta_{1} \sin \phi_{1}, \sin \theta_{1} \sin \phi_{1}, \cos \phi_{1}\right\rangle=\rho\langle 0.32-0.64,0.70\rangle \\
& \mathbf{u}_{2}=\rho\left\langle\cos \theta_{2} \sin \phi_{2}, \sin \theta_{2} \sin \phi_{2}, \cos \phi_{2}\right\rangle=\rho\langle-0.34,0.69,0.64\rangle
\end{aligned}
$$

- The angle α between two vectors is given by the cosine law

$$
\cos \alpha=\frac{\mathbf{u}_{1} \cdot \mathbf{u}_{2}}{\left|\mathbf{u}_{1}\right|\left|\mathbf{u}_{2}\right|}
$$

For the present case, we have $\cos \alpha=-0.10$. Taking the arc-cosine gives $\alpha=1.67$ radians.

- The distance between the two cities is therefore $\rho \alpha \approx 10600 \mathrm{~km}$.

The spherical scale factor.

- Recall that integration using polar coordinates amounts to samping using the cells formed by the r, θ grid. The area of these polar cells is approximately $\Delta A=$ $r \Delta r \Delta \theta$
- Analogously, we would like to evaluate triple integrals by sampling the 3dimensional cells formed by the spherical grid. At small scales, these spherical cells resemble a box with dimensions $\Delta \rho \times \rho \Delta \phi \times \rho \sin \phi \Delta \theta$.
- The above formula is based on the observation that the meridians are proportional to ρ, but that the lines of longi-
 tude are proportional to $r=\rho \sin \phi$.
- As the above remarks demonstrate, integration in spherical coordinates requires an scale factor of $\rho^{2} \sin \phi$ to account for the volume distortion of spherical coordinate cell. In other words,

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Example 3.

- Use spherical coordinates to evaluate the triple integral

$$
I=\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V
$$

where B is the ball of radius 5 centred at the origin.

- We begin by converting the integrand into spherical coordinates:

$$
\left(x^{2}+y^{2}+z^{2}\right)=\rho^{4} .
$$

- Applying the spherical coordinate formula for $d V$ yields

$$
\begin{aligned}
I & =\int_{\theta=0}^{\theta=2 p i} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=5} \rho^{4} \times \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi \int_{\phi=0}^{\phi=\pi} \sin \phi d \phi \int_{\rho=0}^{\rho=5} \rho^{6} d \rho \\
& =2 \pi \times[-\cos \phi]_{0}^{\pi} \times\left[\rho^{7} / 7\right]_{0}^{5} \\
& =312500 / 7 \pi
\end{aligned}
$$

Example 4

- Use spherical coordinates to evaluate the triple integral

$$
I=\iiint_{E} x \exp \left(x^{2}+y^{2}+z^{2}\right) d V
$$

where E is the positive portion of the unit ball $x, y, z \geq 0$.

- In spherical coords, the domain of integration is

$$
E=\{(\rho, \theta, \phi): 0 \leq \rho \leq 1,0 \leq \phi \leq \pi / 2,0 \leq \theta \leq \pi / 2\} .
$$

- The integrand is given by

$$
x \exp \left(x^{2}+y^{2}+z^{2}\right)=\rho e^{\rho^{2}} \cos \theta \sin \phi
$$

- Taking into account the volume scale factor, we obtain

$$
\begin{aligned}
I & =\int_{\theta=0}^{\theta=\pi / 2} \int_{\phi=0}^{\phi=\pi / 2} \int_{\rho=0}^{\rho=1} \rho^{3} e^{\rho^{2}} \sin ^{2} \phi \cos \theta d \rho d \phi d \theta \\
& =\int_{\theta=0}^{\theta=\pi / 2} \cos \theta d \theta \int_{\phi=0}^{\phi=\pi / 2} \sin ^{2} \phi d \phi \int_{\rho=0}^{\rho=1} \rho^{3} e^{\rho^{2}} d \rho \\
& =[\sin \theta]_{0}^{\pi / 2}[\phi / 2-\sin (2 \phi) / 4]_{0}^{\pi / 2}\left[\frac{1}{2}\left(\rho^{2}-1\right) e^{\rho^{2}}\right]_{0}^{1} \\
& =1 \times \pi / 4 \times 1 / 2=\pi / 8
\end{aligned}
$$

Example 5

- Use spherical coordinates to calculate the volume of a sphere of radius R
- We wish to evaluate the triple integral $I=\iiint_{B} d V$ where $B=\{(\rho, \phi, \theta): 0 \leq \rho \leq R, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi\}$.
- Taking into account the volume scale factor we have

$$
\begin{aligned}
I & =\int_{\theta=0}^{\theta=2 \pi} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=R} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi[-\cos \phi]_{0}^{\pi}\left[\frac{1}{3} \rho^{3}\right]_{0}^{R} \\
& =\frac{4}{3} \pi R^{3}
\end{aligned}
$$

Example 6

- Find the volume of the solid E bounded by the half-cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=z$.
- Rewrite the equation of the sphere as $x^{2}+y^{2}+(z-1 / 2)^{2}=1 / 4$. The solid is a sphere of radius $1 / 2$, centered at $(0,0,1 / 2)$.
- The equation of this sphere in sperical coords is $\rho^{2}=\rho \cos \phi$, which simplifies to $\rho=\cos \phi$. The equation of the cone is $\rho \cos \phi=\rho \sin \phi$, which simplifies to $\tan \phi=1$, or $\phi=\pi / 4$.
- Thus, $E=\{(\rho, \phi, \theta): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 4,0 \leq \rho \leq \cos \phi\}$
- The volume integral is therefore

$$
\begin{aligned}
I & =\iiint_{E} d V=\int_{\theta=0}^{\theta=2 \pi} \int_{\phi=0}^{\phi=\pi / 4} \int_{\rho=0}^{\rho=\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi \int_{0}^{\pi / 4} \frac{1}{3} \cos ^{3} \phi \sin \phi d \phi \\
& =-\frac{2}{3} \pi\left[\cos \phi^{4} / 4\right]_{0}^{\pi / 4} \\
& =-\frac{\pi}{6}\left(\frac{1}{4}-1\right)=\frac{\pi}{8}
\end{aligned}
$$

Example 7

- Determine the average distance between a point inside a ball of radius R and the ball's centre.
- The average value is given by I / V where

$$
I=\iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} d V
$$

where B is a ball of radius R centered at the origin, and where V is the volume of said ball.

- Using spherical coordinates,

$$
\begin{aligned}
I & =\int_{\theta=0}^{\theta=2 \pi} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=R} \rho^{3} \sin \phi d \phi d \theta \\
& =4 \pi\left[R^{4} / 4\right]=\pi R^{4}
\end{aligned}
$$

- Since $V=4 / 3 \pi R^{3}$, the average distance is

$$
\frac{\pi R^{4}}{V}=\frac{3}{4} R
$$

