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The one-to-one property

> We say that a function y = f(x) is one-to-one if distinct values of
x are mapped to distinct values of y.

» The one-to-one property means that we can solve for x in terms of
y. The formula that expresses x as a function of y is called the
inverse transformation. We will denote it as x = f~1(y).

» Example. The function f(x) = x? is not one-to-one; e.g.,

f(—2) = f(2) = 4. In other words, there is no way to uniquely solve
the equation y = x.

» However, if we restrict the domain to x > 0, then we obtain a
one-to-one function whose inverse is x = f~1(y) = \/y.



2D Transformations

» A 2D transformation

(va) = T(U, V) = (f(uv V)vg(uv V))

is a rule for mapping a 2D point to another 2D point. We also say
that (x, y) is the image of (u, v) under the transforamtion.

> Just as above, we say that T is one-to-one if distinct points produce
distinct images.

» If T is a one-to-one transformation then we can speak of an inverse
transformation (u,v) = T~(x, y) that gives (u, v) as an image of
(x,¥).

» Even though, conceptually 2D transformations have the same
definition as 1D transformations, the algebraic manipulations tend to
be much more involved.

» We can also regard a 2D transformation as the relation between two
sets of coordinate systems.

» The curves u = const. and v = const. generate a grid in the x, y
plane that allows us to visualize the transformation and the
corresponding coordinates.



Example: polar coordinates

» The transformation from polar to Carte-
sian coorinates is the function

(x,y)=T(r,0) = (rcos@,rsinf).

» As such, the above transformation is not
one-to-one because

T(r,0) = T(r,0+ 2m).

Polar Grid In Degrees With Radius 15°

> However, if we restrict the domain to r > 0 and —7/2 < 0 < /2
we obtain a one-to-one transformation with inverse

(r,0) = T Y(x,y) = ( x2 4+ y2 tan~! (%)) .

» The image of the strip U= {(r,0):r>0,—7/2 <0 < w/2} is the
right half-plane T(U) = {(x,y) : x > 0}.

» Example. The inverse image of the %—disk
D={(x,y): x> +y?<1,x >0,y >0} is the rectangle

D) = {(r6): 0 < r <1, 0< 0 <w/2).



Linear transformations

2

A transformation of the form
(x,y) = L(u,v) = (au+ bv,cu+dv), ad—bc#0

is called a linear transformation.
The inverse transformation is

_ dx — by ay —cx
=11 =
(u,v) (x.y) (ad — bc’ ad — bc)

The denominator ad — bc in the above is the reason why we include
the condition ad — bc # 0.

The calculations below suffice to verify the inverse formula:

a(dx — by) + b(ay — ex) = (ad — bc)x
c(dx — by) + d(ay — cx) = (ad — bc)y

The image of a rectangle under a linear transformations is a
parallelogram. In particular the image L(S) of the unit square

S =[0,1] x [0,1] in the u, v plane is the parallelogram formed by
the vectors (a, c¢) and (b, d).



Change of variables

>
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We study transformations and coordinates for the same reason we
study the substitution rule (change of variables) in 1D integrals.

Recall that

/ " F)d = / " Fle(u))e (v)d

where x = g(u) is a change of variables, where u = g~1(x) is the
inverse function, and where ¢ = g=1(a),d = g~1(b).

In order to derive an analogous rule for double integrals we must

observe that a change of variables introduces a distortion of area.

We define the Jacobian of a transformation (x,y) = T(u, v) to be
the 2 x 2 determinant

doy) (B E| _oxdy oxdy
Nu,v) |5 25| Oudv IJvou

The cells of a finely meshed u, v grid are approximated by a
parallelogram whose area is scaled by the above Jacobian.



Derivation of the Jacobian

» The cells of a finely meshed wu, v grid are approximated by a
parallelogram whose area is scaled by the above Jacobian.

> Express (x,y) = T(u,v) as x = f(u,v), y = g(u,v).

» Linear approximation then gives us

Ox Ox
Ax~ —A —A
= et + v
dy dy
Ay ~ —A —=A
Y= aut + v
The above approximate improves as Au, Av shrink to zero.

» Using the above, we approximate the corners of a u, v cell as follows:
Ox Oy
T A ~T T,Au, T,=(—,=
(u+ Au,v) (u,v)+ u <8u 3u>
T(u,v+Av)= T(u,v)+ T, Av T,= <g)‘j, g\):>
» For small Au, Av the cell resembles a pallelogram generated by the
vectors T,Au, T,Av having area
x,y

(u,v

~—

Aulv.
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| T, x T,|JAuAv = ’
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Change of variables in double integrals

» Let (x,y) = T(u,v) be a 2D transformation and R a domain in the
(x,y) plane. Then,

//R F(x,y)dxdy://s F(T(u, v))’ggz:}g‘dudv

where S = T~1(R) is the inverse image of R in the (u, v) plane.
» The Jacobian is present as a scale-factor in the above formula to
account for the distortion introduced by switching to the (u, v) grid.
» Example. Consider the Jacobian of the polar coordinate
transformation x = rcosf, y = rsin6.

d(x,y) 0Ox0dy Ox0y

o(r,0)  Oro0 00 or
=rcosf x cos — (—rsinf) x sinf = r

» The above value for the Jacobian is reflected in the change of
variables formula for polar coordinates:

// f(x,y)dxdy = // f(rcos@,rsinf)rdrdd
R s

where S is the pre-image of the domain R in the r, 6 plane.



Example

» Evaluate the double integral | = // exp((x + y)/(x — y))dA where
R
R is the trapezoid with vertices (1,0),(2,0), (0, —2),(0,—1)

We employ the change of variables u = x4+ y,v=x—y.

The inverse transformation is x = 1/2(u+ v), y = 1/2(u — v).

The integrand is now exp((x +y)/(x — y)) = e*/".

The vertices of R, when expressed using (u, v) coordinates
correspond to (1,1),(2,2),(—2,2),(—1,1). Since the transformation
is linear, the image of R in the (u, v) plane is the trapezoid

vvyyvyy

S={(uy,v):1<v<2,—v<u<v}

0 y)
> = — — =
The Jacobian is v |—1/4—-1/4|=1/2.

» Finally, applying the change of variables formula gives

v=2 u=v 2 =v
I = 1/ / eV dudv = 1/ <{ve”/"}u ) dv
2 v=1l Ju=—v 2 1 u=-v
1 2

v=2

= 7/ v(e—e’l)dv:(efefl)[v2/4] = %(6*671)

2 1 v=1



Change of variables in triple integrals

» A change of variables in a triple integral follows the same logic as for
double integrals.

» A 3D transformation (x, y,z) = T(u, v, w) distorts the volume of
the reference cells by a scale factor corresponding to the 3 x 3
Jacobian

Ox  9x  Ox
ox.y,z) |8 & 9y

A(u, v, w) Ju 3y G

» Accordingly, the change of variables for triple integrals takes the form

|| Py 2rasavaz = [ [ F(T(wvow) ‘g((”w))

where S = T71(R) is the inverse image of R in (u, v, w) space.

dudvdw




Application: spherical coordinate volume element

» We re-derive the spherical coord. scale-factor as a 3 x 3 Jacobian.

» The spherical coordinate transformation is
x = pcosfsing, y=psinfsing, z=pcosae

» To simplify things we set r = pcos@sin @i+ psinfsingj+ pcospk and
express the Jacobian as a triple product

0 96 %:rp'(r(j)XrQ)

r, = cos 6 sin ¢i + sin 0 sin ¢j + cos ok

pcosfcos¢p psinfcos¢p —psing
ry X rg = |—psinfsing pcoshsin¢ 0
i j k

= p° sin ¢(cos B sin i + sin 0 sin ¢j + cos pk) = p’ sin ¢r,,
» Once we observe that r, is a unit vector, we conclude that

0xy.2) _ oo

(p, 9,0)

in agreement with the formula for triple integrals in spherical coordinates.



