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The one-to-one property

I We say that a function y = f (x) is one-to-one if distinct values of
x are mapped to distinct values of y .

I The one-to-one property means that we can solve for x in terms of
y . The formula that expresses x as a function of y is called the
inverse transformation. We will denote it as x = f −1(y).

I Example. The function f (x) = x2 is not one-to-one; e.g.,
f (−2) = f (2) = 4. In other words, there is no way to uniquely solve
the equation y = x2.

I However, if we restrict the domain to x > 0, then we obtain a
one-to-one function whose inverse is x = f −1(y) =

√
y .



2D Transformations
I A 2D transformation

(x , y) = T (u, v) = (f (u, v), g(u, v))

is a rule for mapping a 2D point to another 2D point. We also say
that (x , y) is the image of (u, v) under the transforamtion.

I Just as above, we say that T is one-to-one if distinct points produce
distinct images.

I If T is a one-to-one transformation then we can speak of an inverse
transformation (u, v) = T−1(x , y) that gives (u, v) as an image of
(x , y).

I Even though, conceptually 2D transformations have the same
definition as 1D transformations, the algebraic manipulations tend to
be much more involved.

I We can also regard a 2D transformation as the relation between two
sets of coordinate systems.

I The curves u = const. and v = const. generate a grid in the x , y
plane that allows us to visualize the transformation and the
corresponding coordinates.



Example: polar coordinates
I The transformation from polar to Carte-

sian coorinates is the function

(x , y) = T (r , θ) = (r cos θ, r sin θ).

I As such, the above transformation is not
one-to-one because

T (r , θ) = T (r , θ + 2π).

I However, if we restrict the domain to r > 0 and −π/2 < θ < π/2
we obtain a one-to-one transformation with inverse

(r , θ) = T−1(x , y) =
(√

x2 + y2, tan−1
(y
x

))
.

I The image of the strip U = {(r , θ) : r > 0,−π/2 < θ < π/2} is the
right half-plane T (U) = {(x , y) : x > 0}.

I Example. The inverse image of the 1
4 -disk

D = {(x , y) : x2 + y2 < 1, x > 0, y > 0} is the rectangle

T−1(D) = {(r , θ) : 0 < r < 1, 0 < θ < π/2}.



Linear transformations
I A transformation of the form

(x , y) = L(u, v) = (au + bv , cu + dv), ad − bc 6= 0

is called a linear transformation.

I The inverse transformation is

(u, v) = L−1(x , y) =

(
dx − by

ad − bc
,
ay − cx

ad − bc

)
The denominator ad − bc in the above is the reason why we include
the condition ad − bc 6= 0.

I The calculations below suffice to verify the inverse formula:

a(dx − by) + b(ay − cx) = (ad − bc)x

c(dx − by) + d(ay − cx) = (ad − bc)y

I The image of a rectangle under a linear transformations is a
parallelogram. In particular the image L(S) of the unit square
S = [0, 1]× [0, 1] in the u, v plane is the parallelogram formed by
the vectors 〈a, c〉 and 〈b, d〉.



Change of variables

I We study transformations and coordinates for the same reason we
study the substitution rule (change of variables) in 1D integrals.

I Recall that ∫ b

a

f (x)dx =

∫ d

c

f (g(u))g ′(u)du

where x = g(u) is a change of variables, where u = g−1(x) is the
inverse function, and where c = g−1(a), d = g−1(b).

I In order to derive an analogous rule for double integrals we must
observe that a change of variables introduces a distortion of area.

I We define the Jacobian of a transformation (x , y) = T (u, v) to be
the 2× 2 determinant

∂(x , y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

I The cells of a finely meshed u, v grid are approximated by a
parallelogram whose area is scaled by the above Jacobian.



Derivation of the Jacobian
I The cells of a finely meshed u, v grid are approximated by a

parallelogram whose area is scaled by the above Jacobian.
I Express (x , y) = T (u, v) as x = f (u, v), y = g(u, v).
I Linear approximation then gives us

∆x ≈ ∂x

∂u
∆u +

∂x

∂v
∆v

∆y ≈ ∂y

∂u
∆u +

∂y

∂v
∆v

The above approximate improves as ∆u,∆v shrink to zero.
I Using the above, we approximate the corners of a u, v cell as follows:

T (u + ∆u, v) ≈ T (u, v) + Tu ∆u, Tu =

〈
∂x

∂u
,
∂y

∂u

〉
T (u, v + ∆v) ≈ T (u, v) + Tv ∆v Tv =

〈
∂x

∂v
,
∂y

∂v

〉
I For small ∆u,∆v the cell resembles a pallelogram generated by the

vectors Tu∆u,Tv∆v having area

|Tu × Tv |∆u∆v =

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣∆u∆v .



Change of variables in double integrals
I Let (x , y) = T (u, v) be a 2D transformation and R a domain in the

(x , y) plane. Then,∫∫
R

F (x , y)dxdy =

∫∫
S

F (T (u, v))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ dudv
where S = T−1(R) is the inverse image of R in the (u, v) plane.

I The Jacobian is present as a scale-factor in the above formula to
account for the distortion introduced by switching to the (u, v) grid.

I Example. Consider the Jacobian of the polar coordinate
transformation x = r cos θ, y = r sin θ.

∂(x , y)

∂(r , θ)
=
∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r

= r cos θ × cos θ − (−r sin θ)× sin θ = r

I The above value for the Jacobian is reflected in the change of
variables formula for polar coordinates:∫∫

R

f (x , y)dxdy =

∫∫
S

f (r cos θ, r sin θ)rdrdθ

where S is the pre-image of the domain R in the r , θ plane.



Example
I Evaluate the double integral I =

∫∫
R

exp((x + y)/(x − y))dA where

R is the trapezoid with vertices (1, 0), (2, 0), (0,−2), (0,−1)
I We employ the change of variables u = x + y , v = x − y .
I The inverse transformation is x = 1/2(u + v), y = 1/2(u − v).
I The integrand is now exp((x + y)/(x − y)) = eu/v .
I The vertices of R, when expressed using (u, v) coordinates

correspond to (1, 1), (2, 2), (−2, 2), (−1, 1). Since the transformation
is linear, the image of R in the (u, v) plane is the trapezoid

S = {(u, v) : 1 ≤ v ≤ 2,−v ≤ u ≤ v}.

I The Jacobian is
∂(x , y)

∂(u, v)
= | − 1/4− 1/4| = 1/2.

I Finally, applying the change of variables formula gives

I =
1

2

∫ v=2

v=1

∫ u=v

u=−v
eu/vdudv =

1

2

∫ 2

1

([
veu/v

]u=v

u=−v

)
dv

=
1

2

∫ 2

1

v(e − e−1)dv = (e − e−1)
[
v2/4

]v=2

v=1
=

3

4
(e − e−1)



Change of variables in triple integrals

I A change of variables in a triple integral follows the same logic as for
double integrals.

I A 3D transformation (x , y , z) = T (u, v ,w) distorts the volume of
the reference cells by a scale factor corresponding to the 3× 3
Jacobian

∂(x , y , z)

∂(u, v ,w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
I Accordingly, the change of variables for triple integrals takes the form∫∫

R

F (x , y , z)dxdydz =

∫∫∫
S

F (T (u, v ,w))

∣∣∣∣ ∂(x , y , z)

∂(u, v ,w)

∣∣∣∣ dudvdw
where S = T−1(R) is the inverse image of R in (u, v ,w) space.



Application: spherical coordinate volume element
I We re-derive the spherical coord. scale-factor as a 3× 3 Jacobian.

I The spherical coordinate transformation is

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ

I To simplify things we set r = ρ cos θ sinφ i+ ρ sin θ sinφ j+ ρ cosφ k and
express the Jacobian as a triple product∣∣∣∣∣∣∣

∂x
∂ρ

∂x
∂φ

∂x
∂θ

∂y
∂ρ

∂y
∂φ

∂y
∂θ

∂z
∂ρ

∂z
∂φ

∂z
∂θ

∣∣∣∣∣∣∣ = rρ · (rφ × rθ)

rρ = cos θ sinφi+ sin θ sinφj+ cosφk

rφ × rθ =

∣∣∣∣∣∣
ρ cos θ cosφ ρ sin θ cosφ −ρ sinφ
−ρ sin θ sinφ ρ cos θ sinφ 0

i j k

∣∣∣∣∣∣
= ρ2 sinφ(cos θ sinφi+ sin θ sinφj+ cosφk) = ρ2 sinφrρ

I Once we observe that rρ is a unit vector, we conclude that

∂(x , y , z)

∂(ρ, φ, θ)
= ρ2 sinφ

in agreement with the formula for triple integrals in spherical coordinates.


