Lecture 5 Transformations and Changes of Variables

R. Milson Math 2002, Winter 2020

Outline

- ▶ Text: section 15.9
- The one-to-one property
- Transformations
- Example: polar coordinates
- Linear transformations
- The Jacobian
- Change of variables in double integrals
- 2D Example
- Change of variables in triple integrals
- Application: spherical coordinates

The one-to-one property

- We say that a function y = f(x) is one-to-one if distinct values of x are mapped to distinct values of y.
- The one-to-one property means that we can solve for x in terms of y. The formula that expresses x as a function of y is called the inverse transformation. We will denote it as x = f⁻¹(y).
- ► Example. The function f(x) = x² is not one-to-one; e.g., f(-2) = f(2) = 4. In other words, there is no way to uniquely solve the equation y = x².
- ► However, if we restrict the domain to x > 0, then we obtain a one-to-one function whose inverse is x = f⁻¹(y) = √y.

2D Transformations

A 2D transformation

$$(x,y) = T(u,v) = (f(u,v),g(u,v))$$

is a rule for mapping a 2D point to another 2D point. We also say that (x, y) is the image of (u, v) under the transformation.

- Just as above, we say that T is one-to-one if distinct points produce distinct images.
- If T is a one-to-one transformation then we can speak of an inverse transformation (u, v) = T⁻¹(x, y) that gives (u, v) as an image of (x, y).
- Even though, conceptually 2D transformations have the same definition as 1D transformations, the algebraic manipulations tend to be much more involved.
- We can also regard a 2D transformation as the relation between two sets of coordinate systems.
- The curves u = const. and v = const. generate a grid in the x, y plane that allows us to visualize the transformation and the corresponding coordinates.

Example: polar coordinates

The transformation from polar to Cartesian coorinates is the function

$$(x, y) = T(r, \theta) = (r \cos \theta, r \sin \theta).$$

 As such, the above transformation is not one-to-one because

$$T(r,\theta) = T(r,\theta+2\pi).$$

However, if we restrict the domain to r > 0 and -π/2 < θ < π/2 we obtain a one-to-one transformation with inverse

$$(r,\theta) = T^{-1}(x,y) = \left(\sqrt{x^2 + y^2}, \tan^{-1}\left(\frac{y}{x}\right)\right).$$

The image of the strip U = {(r, θ) : r > 0, −π/2 < θ < π/2} is the right half-plane T(U) = {(x, y) : x > 0}.

• Example. The inverse image of the
$$\frac{1}{4}$$
-disk
 $D = \{(x, y) : x^2 + y^2 < 1, x > 0, y > 0\}$ is the rectangle
 $T^{-1}(D) = \{(r, \theta) : 0 < r < 1, 0 < \theta < \pi/2\}.$

Linear transformations

A transformation of the form

$$(x,y) = L(u,v) = (au + bv, cu + dv), \quad ad - bc \neq 0$$

is called a linear transformation.

The inverse transformation is

$$(u, v) = L^{-1}(x, y) = \left(\frac{dx - by}{ad - bc}, \frac{ay - cx}{ad - bc}\right)$$

The denominator ad - bc in the above is the reason why we include the condition $ad - bc \neq 0$.

The calculations below suffice to verify the inverse formula:

$$a(dx - by) + b(ay - cx) = (ad - bc)x$$
$$c(dx - by) + d(ay - cx) = (ad - bc)y$$

The image of a rectangle under a linear transformations is a parallelogram. In particular the image L(S) of the unit square S = [0,1] × [0,1] in the u, v plane is the parallelogram formed by the vectors ⟨a, c⟩ and ⟨b, d⟩.

Change of variables

We study transformations and coordinates for the same reason we study the substitution rule (change of variables) in 1D integrals.

Recall that

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(g(u))g'(u) du$$

where x = g(u) is a change of variables, where $u = g^{-1}(x)$ is the inverse function, and where $c = g^{-1}(a), d = g^{-1}(b)$.

- In order to derive an analogous rule for double integrals we must observe that a change of variables introduces a distortion of area.
- We define the Jacobian of a transformation (x, y) = T(u, v) to be the 2 × 2 determinant

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

The cells of a finely meshed u, v grid are approximated by a parallelogram whose area is scaled by the above Jacobian.

Derivation of the Jacobian

- The cells of a finely meshed u, v grid are approximated by a parallelogram whose area is scaled by the above Jacobian.
- Express (x, y) = T(u, v) as x = f(u, v), y = g(u, v).

Linear approximation then gives us

$$\Delta x \approx \frac{\partial x}{\partial u} \Delta u + \frac{\partial x}{\partial v} \Delta v$$
$$\Delta y \approx \frac{\partial y}{\partial u} \Delta u + \frac{\partial y}{\partial v} \Delta v$$

The above approximate improves as $\Delta u, \Delta v$ shrink to zero.

• Using the above, we approximate the corners of a u, v cell as follows:

$$T(u + \Delta u, v) \approx T(u, v) + T_u \Delta u, \quad T_u = \left\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \right\rangle$$
$$T(u, v + \Delta v) \approx T(u, v) + T_v \Delta v \quad T_v = \left\langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v} \right\rangle$$

For small Δu, Δv the cell resembles a pallelogram generated by the vectors T_uΔu, T_vΔv having area

$$|T_u \times T_v| \Delta u \Delta v = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \Delta v.$$

Change of variables in double integrals

Let (x, y) = T(u, v) be a 2D transformation and R a domain in the (x, y) plane. Then,

$$\iint_{R} F(x,y) dx dy = \iint_{S} F(T(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

where $S = T^{-1}(R)$ is the inverse image of R in the (u, v) plane.

- The Jacobian is present as a scale-factor in the above formula to account for the distortion introduced by switching to the (u, v) grid.
- Example. Consider the Jacobian of the polar coordinate transformation $x = r \cos \theta$, $y = r \sin \theta$.

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta} - \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial r}$$
$$= r \cos \theta \times \cos \theta - (-r \sin \theta) \times \sin \theta = r$$

The above value for the Jacobian is reflected in the change of variables formula for polar coordinates:

$$\iint_{R} f(x, y) dx dy = \iint_{S} f(r \cos \theta, r \sin \theta) r dr d\theta$$

where S is the pre-image of the domain R in the r, θ plane.

Example

- Evaluate the double integral $I = \iint_R \exp((x+y)/(x-y)) dA$ where R is the trapezoid with vertices (1,0), (2,0), (0,-2), (0,-1)
- We employ the change of variables u = x + y, v = x y.
- The inverse transformation is x = 1/2(u + v), y = 1/2(u v).
- The integrand is now $\exp((x+y)/(x-y)) = e^{u/v}$.
- ► The vertices of R, when expressed using (u, v) coordinates correspond to (1, 1), (2, 2), (-2, 2), (-1, 1). Since the transformation is linear, the image of R in the (u, v) plane is the trapezoid

$$S = \{(u,v) : 1 \leq v \leq 2, -v \leq u \leq v\}.$$

- The Jacobian is $\frac{\partial(x, y)}{\partial(u, v)} = |-1/4 1/4| = 1/2.$
- Finally, applying the change of variables formula gives

$$I = \frac{1}{2} \int_{v=1}^{v=2} \int_{u=-v}^{u=v} e^{u/v} du dv = \frac{1}{2} \int_{1}^{2} \left(\left[v e^{u/v} \right]_{u=-v}^{u=v} \right) dv$$
$$= \frac{1}{2} \int_{1}^{2} v(e - e^{-1}) dv = (e - e^{-1}) \left[v^{2}/4 \right]_{v=1}^{v=2} = \frac{3}{4} (e - e^{-1})$$

Change of variables in triple integrals

- A change of variables in a triple integral follows the same logic as for double integrals.
- A 3D transformation (x, y, z) = T(u, v, w) distorts the volume of the reference cells by a scale factor corresponding to the 3 × 3 Jacobian

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Accordingly, the change of variables for triple integrals takes the form

$$\iint_{R} F(x, y, z) dx dy dz = \iiint_{S} F(T(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw$$

where $S = T^{-1}(R)$ is the inverse image of R in (u, v, w) space.

Application: spherical coordinate volume element

- We re-derive the spherical coord. scale-factor as a 3×3 Jacobian.
- The spherical coordinate transformation is

$$x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi, \quad z = \rho \cos \phi$$

► To simplify things we set $\mathbf{r} = \rho \cos \theta \sin \phi \mathbf{i} + \rho \sin \theta \sin \phi \mathbf{j} + \rho \cos \phi \mathbf{k}$ and express the Jacobian as a triple product

$$\begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{vmatrix} = \mathbf{r}_{\rho} \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta})$$
$$\mathbf{r}_{\rho} = \cos\theta \sin\phi \mathbf{i} + \sin\theta \sin\phi \mathbf{j} + \cos\phi \mathbf{k}$$
$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \begin{vmatrix} \rho \cos\theta \cos\phi & \rho \sin\theta \cos\phi & -\rho \sin\phi \\ -\rho \sin\theta \sin\phi & \rho \cos\theta \sin\phi & 0 \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \end{vmatrix}$$
$$= \rho^{2} \sin\phi (\cos\theta \sin\phi \mathbf{i} + \sin\theta \sin\phi \mathbf{j} + \cos\phi \mathbf{k}) = \rho^{2} \sin\phi \mathbf{r}_{\rho}$$

Once we observe that r_ρ is a unit vector, we conclude that

$$\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)} = \rho^2 \sin \phi$$

in agreement with the formula for triple integrals in spherical coordinates.