
Lecture 6
Line Integrals

R. Milson
Math 2002, Winter 2020



Outline

I Text: sections 10.2, 10.3, 13.2 (review) and section 16.2

I Line integrals with respect to arclength.

I Example 1.

I Mass integrals.

I Example 2.

I Oriented line integrals.

I Example 3.



Parametric curves
I A 2D parametric curve is the representation of a plane curve by

means of two functions of one variable:

x = f (t), y = g(t), t0 ≤ t ≤ t1.

One interprets the above equations as the trajectory of a particle
with position x , y at time t. A domain t0 ≤ t ≤ t1 restricts the
curve to the segment with endpoints:

(x0, y0) = (f (t0), g(t0)), (x1, y1) = (f (t1), g(t1)).

I Example: x = cos(t), y = sin(t), 0 ≤ t ≤ π is a parameterization of
the upper semicircle x2 + y2 = 1, y ≥ 0. The initial endpoint (1, 0)
is attained at t = 0. The final endpoint (−1, 0) is attained at t = π.

I A change of variables such as τ = cos t provides a different
parameterization of the same curve:

x = τ, y =
√

1− τ 2, −1 ≤ τ ≤ 1.

I With the reparameterization, the starting endpoint is (−1, 0) and
the final endpoint is (1, 0). (Desmos) We therefore say the above
parameterizations have opposite orientations.

https://www.desmos.com/calculator/fh1bnz1img


Speed and arclength
I Consider a parametric curve r(t) = f (t)i + g(t)j. If r(t) represents

the position of a particle, then r′(t) = f ′(t)i + g ′(t)j represents the
velocity vector. The magnitude of the velocity vector

|r′(t)| =
√

f ′(t)2 + g ′(t)2

represents the speed of the particle.
I The arclength function represents the distance travelled by a particle

s(t) =

∫ t

0

|r′(u)|du

I By FTC, s ′(t) = |r′(t)|. Rewriting as

ds

dt
=

√
dx

dt

2

+
dy

dt

2

,

gives the formula for the arclength element

ds =

√
dx

dt

2

+
dy

dt

2

dt

I The length of a parametric curve may be obtained by integrating the
speed with respect to time:

L =

∫ t1

t0

√
f ′(t)2 + g ′(t)2dt.

I Example: calculate the length of the semicircle

r(t) = cos(t)i + sin(t)j, 0 ≤ t ≤ π.
The velocity vector and the speed are given by

r′(t) = − sin(t)i + cos(t)j, |r′(t)| =
√

sin2 t + cos2 t = 1.

The length of the semicircle is therefore L =
∫ π
0

1dt = π.



Line integrals with respect to arclength

I Let C be a curve and ds the corresponding element of arclength.
We consider integrals of the form

I =

∫
C

F (x , y)ds

I We evaluate such an integral by parameterizing the curve

x = f (t), y = g(t), a ≤ t ≤ b

and using the preceding expression for the arclength. Thus,

I =

∫ t=b

t=a

F (f (t), g(t))
√
f ′(t)2 + g ′(t)2dt

I As a special case, if F (x , y) = 1 then we obtain the integral for the
length of the curve:

L =

∫
C

ds =

∫ t=b

t=a

√
f ′(t)2 + g ′(t)2dt.



Example
I Evaluate I =

∫
C

(2 + x2y)ds where C is the upper unit half-circle.
I We parameterize C as x = cos t, y = sin t, 0 ≤ t ≤ π.
I The arclength formula gives ds = dt.
I Applying the above substitutions gives

I =

∫ π

0

(2 + cos2(t) sin(t))dt = 2π −
[1

3
cos3 t

]π
0

= 2π +
2

3
.

I Reparameterizing a given curve C amounts to applying the
substitution rule in evaluating I .

I Example: reparameterize C as x = u, y =
√

1− u2, −1 ≤ u ≤ 1.

ds =

√
1 +

u2

1− u2
du =

du√
1− u2

I =

∫ u=1

u=−1

(
2 + u2

√
1− u2

) du√
1− u2

= 2
[

arcsin(u) +
u3

3

]1
−1

= 2π +
2

3

I The above evaluation corresponds to the trig. substitution u = cos t



Mass integrals
I By regarding the integrand as a density function ρ(x , y), we

interpret a line integral as the mass of a thin wire. Note that if
density is constant, then mass equals length times density.

I Example. Consider a wire C in the shape of a parabolic segment
y = x2, 0 ≤ x ≤ 1 with a density function ρ(x , y) = 2x .

I Parameterize C as x = t, y = t2, 0 ≤ t ≤ 1, ds =
√

1 + 4t2dt
I The corresponding mass integral is

M =

∫
C

2xds =

∫ t=1

t=0

t
√

1 + 4t2dt

=

[
(1 + 4t2)3/2 × 1

2
× 1

3

]1
0

=
1

6

(
5
√

5− 1
)
.

I A different parameterization, say x =
√
u, y = u, 0 ≤ u ≤ 1 gives

ds =

√
1 +

1

4u
du =

1

2

√
4u + 1√

u
du

M =

∫ u=1

u=0

√
1 + 4udu =

1

4
× 2

3
× (1 + 4u)3/2

∣∣∣1
0

=
1

6

(
5
√

5− 1
)
.

I The reparameterization is equivalent to a change of variable u = t2.



Oriented line integrals

I Let C be a curve. An integral of the form

I =

∫
C

P(x , y)dx + Q(x , y)dy

is called an oriented line integral.

I To evaluate I one needs to choose a parameterization
x = f (t), y = g(t), a ≤ t ≤ b and to apply the substitutions
dx = f ′(t)dt and dy = g ′(t)dt.

I The value of the integral is then

I =

∫ t=b

t=a

(P(f (t), g(t))f ′(t) + Q(f (t), g(t))g ′(t)) dt

I A reparameterization of C with the same orientation does not
change the value of I . A reparameterization that reverses the
orientation changes the sign of I .



Example 3.
I Let C be the parabolic segment y = x2, 0 ≤ x ≤ 2. Evaluate

I =

∫
C

ydx + xdy .

I Our first choice of parameterization is x = t, y = t2, 0 ≤ t ≤ 2.

dx = dt, dy = 2tdt I =

∫ t=2

t=0

(t2 + 2t2)dt = t3
∣∣∣2
0

= 8

I The reparameterization x =
√
u, y = u, 0 ≤ u ≤ 4 corresponds to

the change of variables u = t2. The start and endpoints are the same
for both parameterizations. The value of the integral is unchanged:

dx =
1

2
√
u
du, dy = du, I =

∫ u=4

u=0

3

2

√
udu = u3/2

∣∣∣u=4

u=0
= 8

I Reparameterize C as x = 2− v , y = (2− v)2, 0 ≤ v ≤ 2.

dx = −dv , dy = −2(2−v)dv , I = −3

∫ 2

0

(2−v)2dv = (2−v)3
∣∣∣2
0

= 0−8

I The corresponding change of variables t = 2− v reverses the
orientation. Now (2, 4) is the start and (0, 0) is the endpoint.


