Lecture 6 Line Integrals

R. Milson
Math 2002, Winter 2020

Outline

- Text: sections 10.2, 10.3, 13.2 (review) and section 16.2
- Line integrals with respect to arclength.
- Example 1.
- Mass integrals.
- Example 2.
- Oriented line integrals.
- Example 3.

Parametric curves

- A 2D parametric curve is the representation of a plane curve by means of two functions of one variable:

$$
x=f(t), \quad y=g(t), \quad t_{0} \leq t \leq t_{1} .
$$

One interprets the above equations as the trajectory of a particle with position x, y at time t. A domain $t_{0} \leq t \leq t_{1}$ restricts the curve to the segment with endpoints:

$$
\left(x_{0}, y_{0}\right)=\left(f\left(t_{0}\right), g\left(t_{0}\right)\right), \quad\left(x_{1}, y_{1}\right)=\left(f\left(t_{1}\right), g\left(t_{1}\right)\right) .
$$

- Example: $x=\cos (t), y=\sin (t), 0 \leq t \leq \pi$ is a parameterization of the upper semicircle $x^{2}+y^{2}=1, y \geq 0$. The initial endpoint $(1,0)$ is attained at $t=0$. The final endpoint $(-1,0)$ is attained at $t=\pi$.
- A change of variables such as $\tau=\cos t$ provides a different parameterization of the same curve:

$$
x=\tau, y=\sqrt{1-\tau^{2}},-1 \leq \tau \leq 1
$$

- With the reparameterization, the starting endpoint is $(-1,0)$ and the final endpoint is $(1,0)$. (Desmos) We therefore say the above parameterizations have opposite orientations.

Speed and arclength

- Consider a parametric curve $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$. If $\mathbf{r}(t)$ represents the position of a particle, then $\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}$ represents the velocity vector. The magnitude of the velocity vector

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}}
$$

represents the speed of the particle.

- The arclength function represents the distance travelled by a particle

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u
$$

-By FTC, $s^{\prime}(t)=\left|\mathbf{r}^{\prime}(t)\right|$. Rewriting as

$$
\frac{d s}{d t}=\sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}}
$$

gives the formula for the arclength element

$$
d s=\sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}} d t
$$

- The length of a parametric curve may be obtained by integrating the speed with respect to time:

Line integrals with respect to arclength

- Let C be a curve and $d s$ the corresponding element of arclength. We consider integrals of the form

$$
I=\int_{C} F(x, y) d s
$$

- We evaluate such an integral by parameterizing the curve

$$
x=f(t), y=g(t), \quad a \leq t \leq b
$$

and using the preceding expression for the arclength. Thus,

$$
I=\int_{t=a}^{t=b} F(f(t), g(t)) \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

- As a special case, if $F(x, y)=1$ then we obtain the integral for the length of the curve:

$$
L=\int_{C} d s=\int_{t=a}^{t=b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

Example

- Evaluate $I=\int_{C}\left(2+x^{2} y\right) d s$ where C is the upper unit half-circle.
- We parameterize C as $x=\cos t, y=\sin t, 0 \leq t \leq \pi$.
- The arclength formula gives $d s=d t$.
- Applying the above substitutions gives

$$
I=\int_{0}^{\pi}\left(2+\cos ^{2}(t) \sin (t)\right) d t=2 \pi-\left[\frac{1}{3} \cos ^{3} t\right]_{0}^{\pi}=2 \pi+\frac{2}{3}
$$

- Reparameterizing a given curve C amounts to applying the substitution rule in evaluating I.
- Example: reparameterize C as $x=u, y=\sqrt{1-u^{2}}, \quad-1 \leq u \leq 1$.

$$
\begin{aligned}
d s & =\sqrt{1+\frac{u^{2}}{1-u^{2}}} d u=\frac{d u}{\sqrt{1-u^{2}}} \\
I & =\int_{u=-1}^{u=1}\left(2+u^{2} \sqrt{1-u^{2}}\right) \frac{d u}{\sqrt{1-u^{2}}} \\
& =2\left[\arcsin (u)+\frac{u^{3}}{3}\right]_{-1}^{1}=2 \pi+\frac{2}{3}
\end{aligned}
$$

- The above evaluation corresponds to the trig. substitution $u=\cos t$

Mass integrals

- By regarding the integrand as a density function $\rho(x, y)$, we interpret a line integral as the mass of a thin wire. Note that if density is constant, then mass equals length times density.
- Example. Consider a wire C in the shape of a parabolic segment $y=x^{2}, 0 \leq x \leq 1$ with a density function $\rho(x, y)=2 x$.
- Parameterize C as $x=t, y=t^{2}, 0 \leq t \leq 1, \quad d s=\sqrt{1+4 t^{2}} d t$
- The corresponding mass integral is

$$
\begin{aligned}
M & =\int_{C} 2 x d s=\int_{t=0}^{t=1} t \sqrt{1+4 t^{2}} d t \\
& =\left[\left(1+4 t^{2}\right)^{3 / 2} \times \frac{1}{2} \times \frac{1}{3}\right]_{0}^{1}=\frac{1}{6}(5 \sqrt{5}-1) .
\end{aligned}
$$

- A different parameterization, say $x=\sqrt{u}, y=u, 0 \leq u \leq 1$ gives

$$
\begin{aligned}
& d s=\sqrt{1+\frac{1}{4 u}} d u=\frac{1}{2} \frac{\sqrt{4 u+1}}{\sqrt{u}} d u \\
& M=\int_{u=0}^{u=1} \sqrt{1+4 u} d u=\frac{1}{4} \times \frac{2}{3} \times\left.(1+4 u)^{3 / 2}\right|_{0} ^{1}=\frac{1}{6}(5 \sqrt{5}-1) .
\end{aligned}
$$

- The reparameterization is equivalent to a change of variable $u=t^{2}$.

Oriented line integrals

- Let C be a curve. An integral of the form

$$
I=\int_{C} P(x, y) d x+Q(x, y) d y
$$

is called an oriented line integral.

- To evaluate I one needs to choose a parameterization $x=f(t), y=g(t), a \leq t \leq b$ and to apply the substitutions $d x=f^{\prime}(t) d t$ and $d y=g^{\prime}(t) d t$.
- The value of the integral is then

$$
I=\int_{t=a}^{t=b}\left(P(f(t), g(t)) f^{\prime}(t)+Q(f(t), g(t)) g^{\prime}(t)\right) d t
$$

- A reparameterization of C with the same orientation does not change the value of I. A reparameterization that reverses the orientation changes the sign of I.

Example 3.

- Let C be the parabolic segment $y=x^{2}, 0 \leq x \leq 2$. Evaluate

$$
I=\int_{C} y d x+x d y
$$

- Our first choice of parameterization is $x=t, y=t^{2}, 0 \leq t \leq 2$.

$$
d x=d t, d y=2 t d t \quad I=\int_{t=0}^{t=2}\left(t^{2}+2 t^{2}\right) d t=\left.t^{3}\right|_{0} ^{2}=8
$$

- The reparameterization $x=\sqrt{u}, y=u, 0 \leq u \leq 4$ corresponds to the change of variables $u=t^{2}$. The start and endpoints are the same for both parameterizations. The value of the integral is unchanged:

$$
d x=\frac{1}{2 \sqrt{u}} d u, d y=d u, \quad I=\int_{u=0}^{u=4} \frac{3}{2} \sqrt{u} d u=\left.u^{3 / 2}\right|_{u=0} ^{u=4}=8
$$

- Reparameterize C as $x=2-v, y=(2-v)^{2}, 0 \leq v \leq 2$.

$$
d x=-d v, d y=-2(2-v) d v, \quad I=-3 \int_{0}^{2}(2-v)^{2} d v=\left.(2-v)^{3}\right|_{0} ^{2}=0-8
$$

- The corresponding change of variables $t=2-v$ reverses the orientation. Now $(2,4)$ is the start and $(0,0)$ is the endpoint.

