Lecture 8
 Fundamental Theorem for Line Integrals

R. Milson
Math 2002, Winter 2020

Outline

- Text: section 16.3
- The Fundamental Theorem of Calculus for line integrals.
- Example.
- Path independence
- Conservative vector fields
- Examples

The Fundamental Theorem of Calculus for line integrals

- Recall the single variable FTC:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

- The FTC can be generalized to oriented line integrals.
- Theorem 1. $\int_{C} \nabla f \cdot d \mathbf{r}=f\left(\mathbf{r}\left(t_{1}\right)\right)-f\left(\mathbf{r}\left(t_{0}\right)\right)$ where C is a curve parameterized by $\mathbf{r}(t), t_{0} \leq t \leq t_{1}$.
- Proof. Write $\mathbf{r}(t)=a(t) \mathbf{i}+b(t) \mathbf{j}$ so that

$$
I=\int_{C} \nabla f \cdot \mathbf{r}=\int_{t_{0}}^{t_{1}} f_{x}(a(t), b(t)) a^{\prime}(t)+f_{y}\left(a(t), b(t) b^{\prime}(t)\right) d t
$$

By the chain rule,

$$
\frac{d}{d t} f(a(t), b(t))=f_{x}(a(t), b(t)) a^{\prime}(t)+f_{y}\left(a(t), b(t) b^{\prime}(t)\right)
$$

Hence, by the single variable FTC, we have

$$
I=\int_{t_{0}}^{t_{1}} \frac{d}{d t} f(a(t), b(t)) d t=f\left(a\left(t_{1}\right), b\left(t_{1}\right)\right)-f\left(a\left(t_{0}\right), b\left(t_{0}\right)\right)
$$

- A similar proof works for 3D line integrals. Indeed, the FTC of line integrals holds in all dimensions.

Example: gravitational potential

- Question: calculate the work done by the gravitation field

$$
\mathbf{F}=-\frac{\mathbf{r}}{|\mathbf{r}|^{3}}
$$

in moving from position $\mathbf{r}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ to position $\mathbf{r}_{2}=\left(x_{2}, y_{2}, z_{2}\right)$.

- Recall that the gravitational field is conservative $\mathbf{F}=-\nabla U$ where the gravitational potential is $U=-1 /|\mathbf{r}|$.
- Since \mathbf{F} is conservative, the work done is the same regardless of the path that connects the two given points.
- Thus, by the FTC, the work done is

$$
-\Delta U=-U\left(x_{2}, y_{2}, z_{2}\right)+U\left(x_{1}, y_{1}, z_{1}\right)=m M G\left(\frac{1}{\left|\mathbf{r}_{2}\right|}-\frac{1}{\left|\mathbf{r}_{1}\right|}\right) .
$$

- The reason for the negative sign in $\mathbf{F}=-\nabla U$ is that, in physics, positive work done by a conservative force corresponds to a loss of potential energy, and negative work to a gain of potential energy.
- For example, if $\left|\mathbf{r}_{2}\right|>\left|\mathbf{r}_{1}\right|$ (moving up the gravity well), then work is negative with a corresponding gain of potential energy $\Delta U>0$.

Path independence

- We say that $\int \mathbf{F} \cdot d \mathbf{r}$ is path independent if the value of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ depends only on the star- and end-point of the curve C.
- We say that a curve $\mathbf{r}(t), t_{0} \leq t \leq t_{1}$ is closed if $\mathbf{r}\left(t_{0}\right)=\mathbf{r}\left(t_{1}\right)$; i.e., if the curve begins and ends at the same location.
- An oriented line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is a closed curve is called the circulation of \mathbf{F} around C integral.
- Theorem 2. The circulation $\oint_{C} \mathbf{F} \cdot \mathbf{r}=0$ for all closed curves C if and only if $\int \mathbf{F} \cdot \mathbf{r}$ is a path-independent integral.
- Proof. Suppose $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for all closed C. Let C_{1}, C_{2} be two curves that have the same start- and end-points. Let $C=C_{1}-C_{2}$ be the closed curve formed by following C_{1} and then following C_{2} in reverse. By assumption $\oint_{C} \mathbf{F} \cdot \mathbf{r}=0$. By construction, $\int_{C} \mathbf{F} \cdot \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot \mathbf{r}=0$. It follows that $\int_{C_{1}} \mathbf{F} \cdot \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot \mathbf{r}$.
- Suppose $\int \mathbf{F} \cdot d \mathbf{r}$ is path-independent. Let C be a closed curve. Write $C=C_{1}-C_{2}$ where C_{1}, C_{2} have the same start- and end-points. By assumption, $\int_{C_{1}} \mathbf{F} \cdot \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot \mathbf{r}$. Therefore $\int_{C} \mathbf{F} \cdot \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot \mathbf{r}=0$

Conservative vector fields

- We say that a vector field $\mathbf{F}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is conservative if $\mathbf{F}=\nabla f$ for some $f(x, y)$.
- Equivalently, \mathbf{F} is conservative if there exists an $f(x, y)$ such that

$$
P d x+Q d y=d f=f_{x} d x+f_{y} d y
$$

- Theorem 3. A vector field \mathbf{F} is conservative if and only if $\int \mathbf{F} \cdot d \mathbf{r}$ is path independent.
- Proof. Suppose that $F=\nabla f$ for some $f(x, y)$. By the FTC of line integrals, if $\mathbf{F}=\nabla f$, then

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=f\left(\mathbf{r}\left(t_{1}\right)\right)-f\left(\mathbf{r}\left(t_{0}\right)\right)
$$

where $\mathbf{r}(t), t_{0} \leq t \leq t_{1}$ is a parameterization of C_{1}. If C_{2} is another curve with the same endpoints, then $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ will have the same value as above.

Proof of the converse.

- Suppose that $\int_{C} P d x+Q d y$ is path independent.
- Fix a point $\left(x_{0}, y_{0}\right)$ and define the function

$$
f(x, y)=\int_{\left(x_{0}, y_{0}\right)}^{(x, y)} P d x+Q d y=\int_{C} P d x+Q d y
$$

Here C is any curve that connects $\left(x_{0}, y_{0}\right)$ to (x, y). The value of the integral is the same for all C by the path-independence assumption.

- Fix an arbitrary point $\left(x_{1}, y_{1}\right)$. We claim that $P\left(x_{1}, y_{1}\right)=f_{x}\left(x_{1}, y_{1}\right)$.
- Observe that $f_{x}\left(x_{1}, y_{1}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, y_{1}\right)-f\left(x_{1}-h, y_{1}\right)}{h}$
- Observe that $f\left(x_{1}, y_{1}\right)-f\left(x_{1}-h, y_{1}\right)=\int_{\left(x_{1}-h, y_{1}\right)}^{\left(x_{1}, y_{1}\right)} P d x+Q d y$
- Let C be the curve $x=x_{1}+t, y=y_{1},-h \leq t \leq 0$.
- We have $d x=d t, d y=0$. Hence, $\int_{\left(x_{1}-h, y_{1}\right)}^{\left(x_{1}, y_{1}\right.} P d x+Q d y=\int_{-h}^{0} P\left(x_{1}+t, y_{1}\right) d t$
- Hence, $\frac{f\left(x_{1}, y_{1}\right)-f\left(x_{1}-h, y_{1}\right)}{h}$ is the average value of $P(x, y)$ along C. As $h \rightarrow 0$, this average converges to $P\left(x_{1}, y_{1}\right)$.
- This proves that $P\left(x_{1}, y_{1}\right)=f_{x}\left(x_{1}, y_{1}\right)$.
- The proof that $Q=f_{y}$ is similar.

Example 2.

- Consider the line integral $\int(x-y) d x+(x-2) d y=\int \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=(x-y) \mathbf{i}+(x-2) \mathbf{j}$
- Join the points $(0,0)$ and $(1,1)$ by the curve C_{1}, given by

$$
\begin{aligned}
& x=t, y=t, 0 \leq t \leq 1 \text {, and by } C_{2} \text {, given by } \\
& x=t, y=t^{2}, 0 \leq t \leq 1 .
\end{aligned}
$$

- Evaluating the two integrals gives

$$
\begin{aligned}
& \begin{aligned}
& \int_{C_{1}}(x-y) d x+(x-2) d y=\int_{0}^{1}(t-t) d t+\int_{0}^{1}(t-2) d t \\
&=t^{2}-\left.2 t\right|_{0} ^{1}=-1 \\
& \int_{C_{2}}(x-y) d x+(x-2) d y=\int_{0}^{1}\left(t-t^{2}\right) d t+\int_{0}^{1}(t-2) 2 t d t \\
&= \int_{0}^{1}\left(-2+2 t-t^{2}\right) d t=\left[-2 t+t^{2}-\frac{t^{3}}{3}\right]_{0}^{1} \\
&=-2+1-\frac{1}{3}=-\frac{4}{3}
\end{aligned}
\end{aligned}
$$

- The value of the two integrals is different, and therefore the given \mathbf{F} is not conservative.

Example 3.

- We will show that the vector field $\mathbf{F}=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$ is conservative.
- We are searching for a function $f(x, y)$ such that

$$
d f=f_{x} d x+f_{y} d y=(3+2 x y) d x+\left(x^{2}-3 y^{2}\right) d y
$$

- Integrating the first component yields

$$
f(x, y)=\int(3+2 x y) d x=3 x+x^{2} y+g(y)
$$

where $g(y)$ is an unknown function of y.

- Observe that $f_{y}=x^{2}+g^{\prime}(y)$. This implies that

$$
g^{\prime}(y)=-3 y^{2}, \quad g(y)=-y^{3}+C .
$$

- Therefore $\mathbf{F}=\nabla f$ is conservative with

$$
f(x, y)=3 x^{2}+2 x^{2} y-y^{3}+C
$$

- The constant of integration doesn't matter when we evaluate integral because $d C=0$, just like the constant of integration in the single variable anti-derivative.

Example 4.

- Evaluate $I=\int_{C}(3+2 x y) d x+\left(x^{2}-3 y^{2}\right) d y$ where C is given by $\mathbf{r}(t)=e^{t} \sin t \mathbf{i}+e^{t} \cos t \mathbf{j}, 0 \leq t \leq \pi$.
- Now that we know that the above integral is path-independent, we don't actuall have to do any integration. By the FTC we have

$$
\begin{aligned}
\mathbf{r}(0) & =(0,1) \quad \mathbf{r}(\pi)=\left(0, e^{\pi}\right), \\
I & =f\left(0, e^{\pi}\right)-f(0,1),
\end{aligned}
$$

where $f(x, y)=3 x^{2}+2 x^{2} y-y^{3}+C$.

- Performing the necessary substitutions gives

$$
\begin{aligned}
f(0,1) & =-1+C, \\
f\left(0,-e^{\pi}\right) & =e^{3 \pi}+C, \\
I & =e^{3 \pi}+1
\end{aligned}
$$

