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The Fundamental Theorem of Calculus for line integrals
I Recall the single variable FTC:∫ b

a

f ′(x)dx = f (b)− f (a).

I The FTC can be generalized to oriented line integrals.

I Theorem 1.

∫
C

∇f · dr = f (r(t1))− f (r(t0)) where C is a curve

parameterized by r(t), t0 ≤ t ≤ t1.

I Proof. Write r(t) = a(t)i + b(t)j so that

I =

∫
C

∇f · r =

∫ t1

t0

fx(a(t), b(t))a′(t) + fy (a(t), b(t)b′(t))dt

By the chain rule,

d

dt
f (a(t), b(t)) = fx(a(t), b(t))a′(t) + fy (a(t), b(t)b′(t))

Hence, by the single variable FTC, we have

I =

∫ t1

t0

d

dt
f (a(t), b(t))dt = f (a(t1), b(t1))− f (a(t0), b(t0)).

I A similar proof works for 3D line integrals. Indeed, the FTC of line
integrals holds in all dimensions.



Example: gravitational potential
I Question: calculate the work done by the gravitation field

F = − r

|r|3

in moving from position r1 = (x1, y1, z1) to position r2 = (x2, y2, z2).

I Recall that the gravitational field is conservative F = −∇U where
the gravitational potential is U = −1/|r|.

I Since F is conservative, the work done is the same regardless of the
path that connects the two given points.

I Thus, by the FTC, the work done is

−∆U = −U(x2, y2, z2) + U(x1, y1, z1) = mMG

(
1

|r2|
− 1

|r1|

)
.

I The reason for the negative sign in F = −∇U is that, in physics,
positive work done by a conservative force corresponds to a loss of
potential energy, and negative work to a gain of potential energy.

I For example, if |r2| > |r1| (moving up the gravity well), then work is
negative with a corresponding gain of potential energy ∆U > 0.



Path independence
I We say that

∫
F · dr is path independent if the value of

∫
C
F · dr

depends only on the star- and end-point of the curve C .

I We say that a curve r(t), t0 ≤ t ≤ t1 is closed if r(t0) = r(t1); i.e.,
if the curve begins and ends at the same location.

I An oriented line integral
∮
C
F · dr where C is a closed curve is called

the circulation of F around C integral.

I Theorem 2. The circulation
∮
C
F · r = 0 for all closed curves C if

and only if
∫
F · r is a path-independent integral.

I Proof. Suppose
∮
C
F · dr = 0 for all closed C . Let C1,C2 be two

curves that have the same start- and end-points. Let C = C1 − C2

be the closed curve formed by following C1 and then following C2 in
reverse. By assumption

∮
C
F · r = 0. By construction,∫

C

F · r =

∫
C1

F · r−
∫
C2

F · r = 0. It follows that
∫
C1

F · r =
∫
C2

F · r.

I Suppose
∫
F · dr is path-independent. Let C be a closed curve.

Write C = C1 − C2 where C1,C2 have the same start- and
end-points. By assumption,

∫
C1

F · r =
∫
C2

F · r. Therefore∫
C
F · r =

∫
C1

F · r −
∫
C2

F · r = 0



Conservative vector fields

I We say that a vector field F = P(x , y)i + Q(x , y)j is conservative if
F = ∇f for some f (x , y).

I Equivalently, F is conservative if there exists an f (x , y) such that

Pdx + Qdy = df = fxdx + fydy

I Theorem 3. A vector field F is conservative if and only if
∫
F · dr is

path independent.

I Proof. Suppose that F = ∇f for some f (x , y). By the FTC of line
integrals, if F = ∇f , then∫

C1

F · dr = f (r(t1))− f (r(t0)),

where r(t), t0 ≤ t ≤ t1 is a parameterization of C1. If C2 is another
curve with the same endpoints, then

∫
C2

F · dr will have the same
value as above.



Proof of the converse.
I Suppose that

∫
C
Pdx + Qdy is path independent.

I Fix a point (x0, y0) and define the function

f (x , y) =

∫ (x,y)

(x0,y0)

Pdx + Qdy =

∫
C

Pdx + Qdy

Here C is any curve that connects (x0, y0) to (x , y). The value of the
integral is the same for all C by the path-independence assumption.

I Fix an arbitrary point (x1, y1). We claim that P(x1, y1) = fx(x1, y1).

I Observe that fx(x1, y1) = lim
h→0

f (x1, y1)− f (x1 − h, y1)

h

I Observe that f (x1, y1)− f (x1 − h, y1) =

∫ (x1,y1)

(x1−h,y1)

Pdx + Qdy

I Let C be the curve x = x1 + t, y = y1, −h ≤ t ≤ 0.

I We have dx = dt, dy = 0. Hence,

∫ (x1,y1

(x1−h,y1)

Pdx +Qdy =

∫ 0

−h

P(x1 + t, y1)dt

I Hence,
f (x1, y1)− f (x1 − h, y1)

h
is the average value of P(x , y) along C .

As h→ 0, this average converges to P(x1, y1).

I This proves that P(x1, y1) = fx(x1, y1).

I The proof that Q = fy is similar.



Example 2.
I Consider the line integral

∫
(x − y)dx + (x − 2)dy =

∫
F · dr where

F = (x − y)i + (x − 2)j
I Join the points (0, 0) and (1, 1) by the curve C1, given by

x = t, y = t, 0 ≤ t ≤ 1, and by C2, given by
x = t, y = t2, 0 ≤ t ≤ 1.

I Evaluating the two integrals gives∫
C1

(x − y)dx + (x − 2)dy =

∫ 1

0

(t − t)dt +

∫ 1

0

(t − 2)dt

= t2 − 2t
∣∣∣1
0

= −1∫
C2

(x − y)dx + (x − 2)dy =

∫ 1

0

(t − t2)dt +

∫ 1

0

(t − 2)2tdt

=

∫ 1

0

(−2 + 2t − t2)dt =

[
−2t + t2 − t3

3

]1
0

= −2 + 1− 1

3
= −4

3
I The value of the two integrals is different, and therefore the given F

is not conservative.



Example 3.
I We will show that the vector field F = (3 + 2xy)i + (x2 − 3y2)j is

conservative.
I We are searching for a function f (x , y) such that

df = fxdx + fydy = (3 + 2xy)dx + (x2 − 3y2)dy .

I Integrating the first component yields

f (x , y) =

∫
(3 + 2xy)dx = 3x + x2y + g(y),

where g(y) is an unknown function of y .
I Observe that fy = x2 + g ′(y). This implies that

g ′(y) = −3y2, g(y) = −y3 + C .

I Therefore F = ∇f is conservative with

f (x , y) = 3x2 + 2x2y − y3 + C .

I The constant of integration doesn’t matter when we evaluate
integral because dC = 0, just like the constant of integration in the
single variable anti-derivative.



Example 4.

I Evaluate I =
∫
C

(3 + 2xy)dx + (x2 − 3y2)dy where C is given by
r(t) = et sin t i + et cos t j, 0 ≤ t ≤ π.

I Now that we know that the above integral is path-independent, we
don’t actuall have to do any integration. By the FTC we have

r(0) = (0, 1) r(π) = (0, eπ),

I = f (0, eπ)− f (0, 1),

where f (x , y) = 3x2 + 2x2y − y3 + C .

I Performing the necessary substitutions gives

f (0, 1) = −1 + C ,

f (0,−eπ) = e3π + C ,

I = e3π + 1


