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Green’s Theorem

I A simple closed curve is a closed curve without self-intersections.

I A region D ⊂ R2 that is bounded by a simple closed curve is called
simply connected. A region that isn’t simply connected has a
complicated boundary consisting of multiple closed curves, interior
arcs, and point-punctures.

I Theorem. Suppose that P(x , y) and Q(x , y) and their partial
derivatives are non-singular on a region D ⊂ R2. Then,∮

C

Pdx + Qdy =

∫∫
D

(Qx − Py )dA,

where C is the boundary of D oriented in such a way that D lies to
the left, as C is traversed.

I Note, if D is a simply connected region, then the “left-side” rule
means that it’s boundary C should be given a counter-clockwise
orientation.



Example 1.

I Consider the circulation integral I =
∮
C
x dy where C is the circle of

radius R centered at the origin with a counterclockwise orientation.

I Taking x = R cos t, y = r sin t, 0 ≤ t ≤ 2π as the parameterization
of C we calculate

dx = −R sin t, dy = R cos tdt,

I = R2

∫ 2π

0

cos2 tdt = πR2

I In the above integral, P = 0,Q = x . Thus, by Green’s theorem

I =

∫∫
D

(Qx − Py )dA =

∫∫
D

dA = πR2

because the interior of the circle C is the disk of radius R.



Proof of GT
I We will begin by proving a special case of Green’s Theorem where C

bounds a type I region D = {(x , y) : a ≤ x ≤ b, f (x) ≤ y ≤ g(x)} and
where the integrand has the form Pdx .

I Our goal is to prove that
∮
C
Pdx = −

∫∫
D
PydA where the border of D is

the compound curve C = C1 + C2 − C3 − C4 where

C1 : x = t, y = f (t), a ≤ t ≤ b

C2 : x = b, y = t, f (b) ≤ t ≤ g(b)

C3 : x = t, y = g(t), a ≤ t ≤ b

C4 : x = a, y = t, f (a) ≤ t ≤ g(a)

I The corresponding integrals are

I1 =

∫
C1

Pdx =

∫ b

a

P(t, f (t))dt

I2 =

∫
C2

Pdx = 0 because dx = 0

I3 =

∫
C3

Pdx =

∫ b

a

P(t, g(t))dt

I4 =

∫
C4

Pdx = 0



Proof cont.
I On the preceding slide we showed that the border of a type I region

is a compound curve C = C1 + C2 − C3 − C4 and calculated the
value of the corresponding circulation integral:

I =

∮
C

Pdx =

∫ b

a

(P(t, f (t))− P(t, g(t)))dt

I Turning to the double integral, we have∫∫
D

Py dA =

∫ x=b

x=a

∫ y=g(x)

y=f (x)

Pydydx

=

∫ b

a

(P(x , g(x))− P(x , f (x)))dx

where in the last step we used the fundamental theorem of calculus.
I Comparing the two calculations we see that∮

C

Pdx = −
∫∫

D

Py dA.

I If D is a type II region, then a similar proof shows that∫
C

Qdy =

∫∫
D

QxdA



Example 2.
I Use Green’s Theorem to evaluate I =

∮
C
x4dx + xydy where C is the

triangle with vertices (0, 0), (1, 0), (0, 1) oriented counter-clockwise.
I The interior of C is the domain D, bounded by the x and y -axes and

by the line y = 1− x .
I This domain is a type I region:

D = (x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x

I In this example P = x4 and Q = xy . Therefore the curl is

Qx − Py = y .

I Applying Green’s Theorem gives

I =

∫∫
D

ydA =

∫ x=1

x=0

∫ y=1−x

y=0

ydydx

=

∫ 1

0

[y2

2

]1−x

0

=
1

2

∫ 1

0

(1− x)2dx = −1

6
(1− x)3

∣∣∣1
0

=
1

6



Example 3

I Evaluate I =
∮
C

(
3y − esin x

)
dx +

(
7x +

√
1 + y4

)
dy where C is

the circle x2 + y2 = 9 oriented counter-clockwise.

I Note: the line integral in Example 1 could be evaluated with some
effort. However, the line integral is next to impossible to evaluate
directly.

I Instead, we have Qx − Py = 7− 3 = 4.

I Hence, by Green’s theorem:

I =

∫∫
D

4dA

where D is the disk x2 + y2 ≤ 9.

I Therefore, by the A = πr2 formula for the area of a disk, we get

I = 4π × 32 = 36π.



Proof of Green’s Theorem for general domains

I The proof that ∫
C

Pdx = −
∫∫

D

PydA

where D is not a type I domain requies that we draw a finite number
of auxilliary vertical segments that subdivide D into type I
subregions. This is accomplished by drawing one or more vertical
lines at the points of C where the slope is vertical or undefined.

I We then subdivide the boundary as C = C1 + C2 + · · ·+ Cn where
each Ci is a closed curve that encloses a type I region Di with
D = D1 ∪ · · · ∪ Dn. The integrals along the supporting verticals are
repeated twice with opposite orientations and so cancel.

I Likewise, the general proof that∫
C

Qdx =

∫∫
D

QxdA

requires the division of D into type II regions by drawing auxilliary
horizontal segments.



Example 4
I Use Green’s Theorem to evaluate I =

∮
C
ydx where C is the left-side

boundary of the annulus bounded by x2 + y 2 = 4 and x2 + y 2 = 1.

I Here P = y ,Q = 0; so Qx − Py = −1. Hence,

I = −
∫∫

D

dA = −Area(D).

I The area of the annulus is the area of the large disk minus the area of the
smaller disk. Therefore, I = −4π + π = −3π.

I Let us evaluate I directly. Here C = C2 − C1 where C2 is the outer circle
and C1 is the inner circle, both oriented counter-clockwise.

I We parameterize C2 as (x , y) = (2 cos t, 2 sin t), 0 ≤ t ≤ 2π. Hence

dx = −2 sin tdt, ydx = −4 sin2 tdt = −2(1− cos(2t))dt∫
C2

ydx =

∫ 2π

0

−2(1− cos(2t))dt = −4π

I We parameter C1 as (x , y) = (cos t, sin t), 0 ≤ t ≤ 2π. Hence∫
C2

ydx =

∫ 2π

0

−1

2
(1− cos(2t))dt = −π

I Putting it all together,

∫
C

ydx =

∫
C1

ydx −
∫
C2

ydx = −3π.


