Lecture 9
 Green's Theorem

R. Milson
Math 2002, Winter 2020

Outline

- Text: section 16.4
- Green's Theorem
- Example
- Proof for type I and type II regions
- Examples
- Green's theorem for general regions
- Examples

Green's Theorem

- A simple closed curve is a closed curve without self-intersections.
- A region $D \subset \mathbb{R}^{2}$ that is bounded by a simple closed curve is called simply connected. A region that isn't simply connected has a complicated boundary consisting of multiple closed curves, interior arcs, and point-punctures.
- Theorem. Suppose that $P(x, y)$ and $Q(x, y)$ and their partial derivatives are non-singular on a region $D \subset \mathbb{R}^{2}$. Then,

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

where C is the boundary of D oriented in such a way that D lies to the left, as C is traversed.

- Note, if D is a simply connected region, then the "left-side" rule means that it's boundary C should be given a counter-clockwise orientation.

Example 1.

- Consider the circulation integral $I=\oint_{C} x d y$ where C is the circle of radius R centered at the origin with a counterclockwise orientation.
- Taking $x=R \cos t, y=r \sin t, 0 \leq t \leq 2 \pi$ as the parameterization of C we calculate

$$
\begin{aligned}
d x & =-R \sin t, \quad d y=R \cos t d t \\
I & =R^{2} \int_{0}^{2 \pi} \cos ^{2} t d t=\pi R^{2}
\end{aligned}
$$

- In the above integral, $P=0, Q=x$. Thus, by Green's theorem

$$
I=\iint_{D}\left(Q_{x}-P_{y}\right) d A=\iint_{D} d A=\pi R^{2}
$$

because the interior of the circle C is the disk of radius R.

Proof of GT

- We will begin by proving a special case of Green's Theorem where C bounds a type I region $D=\{(x, y): a \leq x \leq b, f(x) \leq y \leq g(x)\}$ and where the integrand has the form $P d x$.
- Our goal is to prove that $\oint_{C} P d x=-\iint_{D} P_{y} d A$ where the border of D is the compound curve $C=C_{1}+C_{2}-C_{3}-C_{4}$ where

$$
\begin{aligned}
& C_{1}: x=t, y=f(t), a \leq t \leq b \\
& C_{2}: x=b, y=t, f(b) \leq t \leq g(b) \\
& C_{3}: x=t, y=g(t), a \leq t \leq b \\
& C_{4}: x=a, y=t, f(a) \leq t \leq g(a)
\end{aligned}
$$

- The corresponding integrals are

$$
\begin{aligned}
& I_{1}=\int_{C_{1}} P d x=\int_{a}^{b} P(t, f(t)) d t \\
& I_{2}=\int_{C_{2}} P d x=0 \quad \text { because } d x=0 \\
& I_{3}=\int_{C_{3}} P d x=\int_{a}^{b} P(t, g(t)) d t \\
& I_{4}=\int_{C_{4}} P d x=0
\end{aligned}
$$

Proof cont.

- On the preceding slide we showed that the border of a type I region is a compound curve $C=C_{1}+C_{2}-C_{3}-C_{4}$ and calculated the value of the corresponding circulation integral:

$$
I=\oint_{C} P d x=\int_{a}^{b}(P(t, f(t))-P(t, g(t))) d t
$$

- Turning to the double integral, we have

$$
\begin{aligned}
\iint_{D} P_{y} d A & =\int_{x=a}^{x=b} \int_{y=f(x)}^{y=g(x)} P_{y} d y d x \\
& =\int_{a}^{b}(P(x, g(x))-P(x, f(x))) d x
\end{aligned}
$$

where in the last step we used the fundamental theorem of calculus.

- Comparing the two calculations we see that

$$
\oint_{C} P d x=-\iint_{D} P_{y} d A
$$

- If D is a type II region, then a similar proof shows that

$$
\int_{C} Q d y=\iint_{D} Q_{x} d A
$$

Example 2.

- Use Green's Theorem to evaluate $I=\oint_{C} x^{4} d x+x y d y$ where C is the triangle with vertices $(0,0),(1,0),(0,1)$ oriented counter-clockwise.
- The interior of C is the domain D, bounded by the x and y-axes and by the line $y=1-x$.
- This domain is a type I region:

$$
D=(x, y): 0 \leq x \leq 1,0 \leq y \leq 1-x
$$

- In this example $P=x^{4}$ and $Q=x y$. Therefore the curl is

$$
Q_{x}-P_{y}=y
$$

- Applying Green's Theorem gives

$$
\begin{aligned}
I & =\iint_{D} y d A=\int_{x=0}^{x=1} \int_{y=0}^{y=1-x} y d y d x \\
& =\int_{0}^{1}\left[\frac{y^{2}}{2}\right]_{0}^{1-x} \\
& =\frac{1}{2} \int_{0}^{1}(1-x)^{2} d x=-\left.\frac{1}{6}(1-x)^{3}\right|_{0} ^{1}=\frac{1}{6}
\end{aligned}
$$

Example 3

- Evaluate $I=\oint_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{1+y^{4}}\right) d y$ where C is the circle $x^{2}+y^{2}=9$ oriented counter-clockwise.
- Note: the line integral in Example 1 could be evaluated with some effort. However, the line integral is next to impossible to evaluate directly.
- Instead, we have $Q_{x}-P_{y}=7-3=4$.
- Hence, by Green's theorem:

$$
I=\iint_{D} 4 d A
$$

where D is the disk $x^{2}+y^{2} \leq 9$.

- Therefore, by the $A=\pi r^{2}$ formula for the area of a disk, we get

$$
I=4 \pi \times 3^{2}=36 \pi
$$

Proof of Green's Theorem for general domains

- The proof that

$$
\int_{C} P d x=-\iint_{D} P_{y} d A
$$

where D is not a type I domain requies that we draw a finite number of auxilliary vertical segments that subdivide D into type I subregions. This is accomplished by drawing one or more vertical lines at the points of C where the slope is vertical or undefined.

- We then subdivide the boundary as $C=C_{1}+C_{2}+\cdots+C_{n}$ where each C_{i} is a closed curve that encloses a type I region D_{i} with $D=D_{1} \cup \cdots \cup D_{n}$. The integrals along the supporting verticals are repeated twice with opposite orientations and so cancel.
- Likewise, the general proof that

$$
\int_{C} Q d x=\iint_{D} Q_{x} d A
$$

requires the division of D into type II regions by drawing auxilliary horizontal segments.

Example 4

- Use Green's Theorem to evaluate $I=\oint_{C} y d x$ where C is the left-side boundary of the annulus bounded by $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=1$.
- Here $P=y, Q=0$; so $Q_{x}-P_{y}=-1$. Hence,

$$
I=-\iint_{D} d A=-\operatorname{Area}(D)
$$

- The area of the annulus is the area of the large disk minus the area of the smaller disk. Therefore, $I=-4 \pi+\pi=-3 \pi$.
- Let us evaluate I directly. Here $C=C_{2}-C_{1}$ where C_{2} is the outer circle and C_{1} is the inner circle, both oriented counter-clockwise.
- We parameterize C_{2} as $(x, y)=(2 \cos t, 2 \sin t), 0 \leq t \leq 2 \pi$. Hence

$$
\begin{gathered}
d x=-2 \sin t d t, y d x=-4 \sin ^{2} t d t=-2(1-\cos (2 t)) d t \\
\int_{C_{2}} y d x=\int_{0}^{2 \pi}-2(1-\cos (2 t)) d t=-4 \pi
\end{gathered}
$$

- We parameter C_{1} as $(x, y)=(\cos t, \sin t), 0 \leq t \leq 2 \pi$. Hence

$$
\int_{C_{2}} y d x=\int_{0}^{2 \pi}-\frac{1}{2}(1-\cos (2 t)) d t=-\pi
$$

- Putting it all together, $\int_{C} y d x=\int_{C_{1}} y d x-\int_{C_{2}} y d x=-3 \pi$.

