Lecture 10 Curl

R. Milson
Math 2002, Winter 2020

Outline

- Text: sections 16.3, 16.5
- 2D curl
- Irrotational 2D vector fields
- Examples
- 3D curl
- Vorticity and fluid flow
- Example

2D Curl

- Let $\mathbf{F}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ be a 2 D vector field. The quantity $Q_{x}-P_{y}$ is called the curl of \mathbf{F}.
- We may therefore restate Green's Theorem as

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \operatorname{curl} \mathbf{F} d A
$$

- Physically, circulation is the amount of "pushing" force along a path. Curl is the amount of "twisting" force present at any given point, or the circulation when we shrink the path down to a single point.
- Thus, intuitively, Green's Theorem asserts that the total circulation of vector field \mathbf{F} around a closed curve C is the total amount of curl (twisting) produced by \mathbf{F} at the points located within C.

Irrotational 2D vector fields

- A 2D vector field $\mathbf{F}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ has zero curl if $Q_{x}=P_{y}$. Such a vector field is called irrotational.
- Theorem. A conservative vector field is necessarily irrotational.
- Proof. A conservative v.f. has the form $\mathbf{F}=\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}$.

Calculating the curl gives curl $\mathbf{F}=f_{x y}-f_{y x}=0$.

- Theorem. Let \mathbf{F} be an irrotational 2D vector field. If \mathbf{F} is defined on a simply connected domain, then \mathbf{F} is conservative.
- Proof. Let $C \subset \operatorname{dom}(\mathbf{F})$ be a simple closed curved, and let D be the interior of C. Since $\operatorname{dom}(\mathbf{F})$ is simply connected, we have $D \subset \operatorname{dom}(\mathbf{F})$. Hence, $Q_{x}=P_{y}$ for all points in D. Hence, by Green's Theorem, $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$. In the preceding lecture, we showed that if the circulation of \mathbf{F} around every simple closed curve is zero, then \mathbf{F} must be conservative.
- Consequently, if \mathbf{F} is not irrotational, then the integral $\int \mathbf{F} \cdot d \mathbf{r}$ is path dependent. The converse is not true; the condition $Q_{x}=P_{y}$ does not guarantee path independence if $\operatorname{dom}(\mathbf{F})$ is not simply connected.

Example 1

- Claim: the vector field $\mathbf{F}=(x-y) \mathbf{i}+(x-2) \mathbf{j}$ is not conservative.
- Here $P=x-y, Q=x-2$ and hence $P_{y}=-1, Q_{x}=1$ are not equal. Therefore \mathbf{F} is not irrotational, and therefore not conservative.
- We can also show that \mathbf{F} fails to be conservative by demonstrating that $I_{C}=\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path dependent.
- Consider the curve C_{1} defined by $(x, y)=(t, t), 0 \leq t \leq 1$.

$$
I_{C_{1}}=\int_{0}^{1} 0 d t+(t-2) d t=t^{2}-\left.2 t\right|_{0} ^{1}=-1
$$

- Consider the curve C_{2} defined by $(x, y)=\left(t, t^{2}\right), 0 \leq t \leq 1$.

$$
\begin{aligned}
I_{C_{2}} & =\int_{0}^{1}\left(t-t^{2}\right) d t+\int_{0}^{1}(t-2) 2 t d t=\int_{0}^{1}-2+2 t-t^{2} \\
& =\left[-2 t+t^{2}-\frac{t^{3}}{3}\right]_{0}^{1}=-2+1-\frac{1}{3}=-\frac{4}{3}
\end{aligned}
$$

- Both curves have endpoints $(0,0)$ and $(1,1)$. However $I_{C_{1}} \neq I_{C_{2}}$.

Example 2

- Claim: the vector field $\mathbf{F}=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$ is conservative.
- Here $P=3+2 x y, Q=x^{2}-3 y^{2}$. Observe that $Q_{x}=2 x, P_{y}=2 x$ are equal. Hence, \mathbf{F} is irrotational.
- There are no singularities, so $\operatorname{dom}(\mathbf{F})=\mathbb{R}^{2}$ is simply connected. Therefore, \mathbf{F} is conservative.
- We will now determine the $f(x, y)$ such that $\mathbf{F}=\nabla f$.
- Since $P=f_{x}$ we begin by integrating $P(x, y)$ with respect to x. This allows us to determine $f(x, y) \pm$ a function of y.

$$
f(x, y)=\int^{x}(3+2 x y) d x=3 x+x^{2} y+g(y)
$$

- It follows that $f_{y}=2 x^{2}+g^{\prime}(y)$. Hence,

$$
g^{\prime}(y)=-3 y^{2}, \quad g(y)=-y^{3}+C .
$$

- Therefore, $f(x, y)=3 x^{2}+2 x^{2} y-y^{3}+C$, where C is a constant of integration.

Example 2 cont.

- Evaluate $I_{C}=\int_{C}(3+2 x y) d x+\left(x^{2}-3 y^{2}\right) d y$ where C is the curve given by $\mathbf{r}(t)=e^{t} \sin (t) \mathbf{i}+e^{t} \cos (t) \mathbf{j}, 0 \leq t \leq \pi$
- In the preceding slide we showed the corresponding vector field $\mathbf{F}=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$ is conservative with $\mathbf{F}=\nabla f$ where $f(x, y)=3 x^{2}+2 x^{2} y-y^{3}+C$.
- Observe that $\mathbf{r}(0)=(0,1), \mathbf{r}(\pi)=\left(0,-e^{\pi}\right)$.
- Thus, by the fundamental theorem of line integrals,

$$
I_{C}=f\left(0,-e^{\pi}\right)-f(0,1)=e^{3 \pi}+C-(-1+C)=1+e^{3 \pi} .
$$

Example 3.

- Consider $I=\int \frac{-y d x+x d y}{x^{2}+y^{2}}$
- Claim: the corresponding vector field is irrotational.

$$
\begin{aligned}
& P_{y}=\frac{-\left(x^{2}+y^{2}\right)+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& Q_{x}=\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=P_{y}
\end{aligned}
$$

- Claim: the above integral is path dependent.
- Let C be the unit circle: $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$.
- Thus, $d x=-\sin t d t, d y=\cos t d t$.

$$
\frac{-y d x+x d y}{x^{2}+y^{2}}=\frac{\sin ^{2} t d t+\cos ^{2} t d t}{\sin ^{2} t+\cos ^{2} t}=d t, \quad I_{C}=\int_{0}^{2 \pi} d t=2 \pi \neq 0 .
$$

Example 3 cont.

- On the previous slide we showed that the vector field

$$
\mathbf{F}=\frac{-y \mathbf{i}}{x^{2}+y^{2}}+\frac{x \mathbf{j}}{x^{2}+y^{2}}
$$

is path dependent, despite being irrotational.

- Let $f(x, y)=\tan ^{-1}(y / x), x>0$ and observe that

$$
\begin{aligned}
& f_{x}=\frac{1}{1+y^{2} / x^{2}}\left(-\frac{y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}} \\
& f_{y}=\frac{1}{1+y^{2} / x^{2}}\left(\frac{1}{x}\right)=\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Therefore, $\mathbf{F}=\nabla f$.

- We just showed that $\int \mathbf{F} \cdot \mathrm{d} \mathbf{r}$ is path dependent, and therefore not conservative. However, there is no contradiction, because $f(x, y)$ cannot be continuously defined on the same domain as $\mathbf{F}(x, y)$.
- Here $\operatorname{dom}(\mathbf{F})$ is not simply connected, because it does not include $(0,0)$. This example illustrates that an if an irrotational vector field has singularities, then $\operatorname{dom}(\mathbf{F})$ is not simply connected. Therefore, such an \mathbf{F} may fail to be conservative.

3D Curl

- Let $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a 3D vector field. We define

$$
\operatorname{curl} \mathbf{F}=\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k}
$$

- Recall the definition of the cross product. For 3D vectors $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ we have

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

- Its convenient to express the gradient operator as

$$
\nabla=D_{x} \mathbf{i}+D_{y} \mathbf{j}+D_{z} \mathbf{k}, \text { so that } \nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k} .
$$

- We can now express the curl operator as

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
P & Q & R
\end{array}\right|,
$$

which agrees with our original definition.

2D curl vs 3D curl

- A 2D vector field may always be regarded as a 3D vector field by writing $\mathbf{F}(x, y, z)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$.
- Applying the definition of curl, we have

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
P & Q & 0
\end{array}\right|=\left(Q_{x}-P_{y}\right) \mathbf{k}
$$

- The name curl comes from the physics of fluid flow. The flow of a liquid in a shallow bed is goverened by a 2D vector field $P \mathbf{i}+Q \mathbf{j}$ which represents the velocity of the fluid.
- Imagine putting a small vertically oriented turbine at each point of the flow. A small difference in the flow at different points of the turbine will cause it to rotate with angular velocity $Q_{x}-P_{y}$ and with an axis of rotation parallel to \mathbf{k}.
- Thus 2D curl $Q_{x}-P_{y}$ is merely the magnitude of the 3D curl ($Q_{x}-P_{y}$)k; the two concepts are largely equivalent.

Conservative implies irrotational

- Theorem 1. Let $f=f(x, y, z)$ be a function of 3 variables. Then, curl $\nabla f=0$. In other words, a conservative v.f. is irrotational.
- It is tempting to rewrite the above identity ans $\nabla \times \nabla f$ and argue that $\nabla \times \nabla=0$. While, this is a useful mnemonique, it is not a valid proof.
- Proof. We apply the definition of ∇f and of curl to obtain

$$
\begin{aligned}
\operatorname{curl} \nabla f & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right| \\
& =\left(f_{z y}-f_{y z}\right) \mathbf{i}+\left(f_{x z}-f_{z x}\right) \mathbf{j}+\left(f_{y x}-f_{x y}\right) \mathbf{k}=0
\end{aligned}
$$

- Theorem 1 provides test for conservative vector fields, in the sense that if curl $\mathbf{F} \neq 0$, then \mathbf{F} isnt conservative. Under certain conditions, it is possible to strengthen the test for a conservative vector field.
- Theorem 2. Suppose that \mathbf{F} is irrotational; i.e., curl $\mathbf{F}=0$. Also suppose that \mathbf{F} and the partial derivatives are defined on all of \mathbb{R}^{3}, without singularities. Then, \mathbf{F} is conservative; i.e. $\mathbf{F}=\nabla f$ for some $f(x, y, z)$.

Additional remarks

- In 3D space, the interpretation of curl is similar to the 2D interpretation. The difference is that instead of a vertically oriented turbine we imagine a small sphere that is free to rotate about a fixed point.
- A non-uniform flow will cause the sphere to spin with the direction of curl F giving the axis of rotation and with the magnitude of curl F giving angular velocity. Follow this curl idea link for additional explanations and visualizations.
- To put it another way, curl is the circulation per unit area, circulation density, or rate of rotation - the amount of twisting at a single point. In 3D space that circulation depends on orientation of the plane. and that's why 3D curl is a vector quantity. The following article elaborates on the physical intuition behind 2D and 3D curl.

Example 4

- Calculate the curl of $\mathbf{F}=x z \mathbf{i}+x y z \mathbf{j}-y^{2} \mathbf{k}$.
- We have

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
x z & x y z & -y^{2}
\end{array}\right|=(-x y-2 y) \mathbf{i}+x \mathbf{j}+y z \mathbf{k} .
$$

- Since the given vector field has non-vanishing curl, it is not conservative.

Example 5

- Show that $\mathbf{F}=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k}$ is a conservative v.f.
- There are no singularities. Enough to establish that \mathbf{F} is irrotational.

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
y^{2} z^{3} & 2 x y z^{3} & 3 x y^{2} z^{2}
\end{array}\right| \\
& =\left(6 x y z^{2}-6 x y z^{2}\right) \mathbf{i}+\left(3 y^{2} z^{2}-3 y^{2} z^{2}\right) \mathbf{j}+\left(2 y z^{3}-2 y z^{3}\right) \mathbf{k}=0
\end{aligned}
$$

- Find the potential function $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
- Since $f_{x}=P, f_{y}=Q, f_{z}=R$, we have

$$
f=\int y^{2} z^{3} d x=x y^{2} z^{3}+g(y, z)
$$

- We now apply the condition $f_{y}=Q$ to obtain

$$
f_{y}=2 x y z^{3}+g_{y}=2 x y z^{3} .
$$

Hence, $g_{y}=0$ and $g(y, z)=h(z)$ is a function of z only.

- Finally, we apply the condition $f_{z}=R$ to obtain

$$
f_{z}=3 x y^{2} z^{2}+h^{\prime}(z)=3 x y^{2} z^{2} .
$$

Hence, $h^{\prime}(z)=0$ and therefore $f=x y^{2} z^{3}+C$, where C is a constant of integration.

