Lecture 11
 Divergence

R. Milson
Math 2002, Winter 2020

Outline

- Text: section 16.5
- Definition
- Example
- Incompressible flow
- Laplacian
- The product rule

Definition of divergence

- Divergence transforms a vector field into a function.
- The divergence of a 3D vector field

$$
\mathbf{F}=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

is defined as

$$
\operatorname{div} \mathbf{F}=P_{x}+Q_{y}+R_{z}
$$

- Using the notation $\nabla=D_{x} \mathbf{i}+D_{y} \mathbf{j}+D_{z} \mathbf{k}$, the divergence operat may be given symbolically as

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}
$$

- Example. If $\mathbf{F}=x z \mathbf{i}+x y z \mathbf{j}-y^{2} \mathbf{k}$, then

$$
\operatorname{div} F=D_{x}(x z)+D_{y}(x y z)-D_{z}\left(y^{2}\right)=z+x z
$$

Incompressible vector fields

- If \mathbf{F} represents the velocity of a fluid flow, then $\operatorname{div} F(x, y, z)$ measures the tendency of the fluid to compress (positive divergence) or rareify (negative divergence) at the point (x, y, z).
- For this reason, a vector feild such that $\operatorname{div} \mathbf{F}=0$ is called incompressible.
- If P, Q, R are constant, then \mathbf{F} is incompressible. However, the class of incompressible vector fields is much more general.
- Theorem. The curl of a given vector field is incompressible. Formally, div curl $\mathbf{F}=0$.
- Proof. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Recall that

$$
\operatorname{curl} \mathbf{F}=\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-Q_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k}
$$

It follows that

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=D_{x}\left(R_{y}-Q_{z}\right)+D_{y}\left(P_{z}-Q_{x}\right)+D_{z}\left(Q_{x}-P_{y}\right)=0
$$

by Clairault's Theorem.

Test for curl

- Theorem. The curl of a given vector field is incompressible. Formally, div curl $\mathbf{F}=0$.
- The above theorem furnishes a useful test: if \mathbf{F} is not incompressible, then it cannot be the curl of another vector field.
- Example. Let $\mathbf{F}=x z \mathbf{i}+x y z \mathbf{j}-y^{2} \mathbf{k}$
- Observe that $\operatorname{div} \mathbf{F}=z+x z \neq 0$.
- Since \mathbf{F} is not incompressible, there does not exists a vector field \mathbf{G} such that $\mathbf{F}=$ curl \mathbf{G}.

The Laplacian

- The gradient, the curl, and divergence are all important first order operators.
- The gradient transforms a function f into a vector field ∇f.
- The curl transforms a vector field \mathbf{F} into another vector field $\nabla \times \mathbf{F}$.
- The divergence transforms a vector field \mathbf{F} into a function $\nabla \cdot \mathbf{F}$.
- We now introduce the Laplacian, a second order operator that transforms a function f into another function $\nabla^{2} f$.
- Here ∇^{2} means $\nabla \cdot \nabla$. Thus,

$$
\nabla^{2} f=\nabla \cdot\left(f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}\right)=f_{x x}+f_{y y}+f_{z z}
$$

The product rule

- The divergence and curl operators obey a number of identities. Here we describe and prove the product rule for these operators.
- Identity 1 . Let f be a function and \mathbf{F} a vector field. Then,

$$
\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla f
$$

- Proof. Write $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Then, $f \mathbf{F}=(f P) \mathbf{i}+(f Q) \mathbf{j}+(f R) \mathbf{k}$. It follows that

$$
\begin{aligned}
\nabla \cdot(f \mathbf{F}) & =D_{x}(f P)+D_{y}(f Q)+D_{z}(f R) \\
& =\left(f_{x} P+f_{y} Q+f_{z} R\right)+f\left(P_{x}+Q_{y}+R_{z}\right) \\
& =\nabla f \cdot \mathbf{F}+f \nabla \cdot \mathbf{F}
\end{aligned}
$$

- Identity 2. We have $\nabla \times(f \mathbf{F})=f \nabla \times \mathbf{F}+\nabla f \times \mathbf{F}$.
- Proof. By the definition of curl,

$$
\nabla \times(f F)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
f P & f Q & f R
\end{array}\right|=f\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
P & Q & R
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
f_{x} & f_{y} & f_{z} \\
P & Q & R
\end{array}\right|
$$

