Lecture 13
Surface and Flux Integrals

R. Milson
Math 2002, Winter 2020
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Unoriented surface integrals

» A surface S is a 2-dimensional subset of 3-dimensional space, that
can be parameterized using 3 functions of 2 variables:

r(u,v) = x(u, v)i+y(u, v)j+ z(u,v)k, (u,v)€D.

» An unoriented surface integral

| = //5 f(x,y,z)dS

is a weighted generalization of the surface area integral ffs ds.

» Indeed, if we intepret f(x,y, z) as a density function, then /
represents the mass of the 2-dimensional object in question.

» In the previous lecture, we demonstrated that

dS = |ry, x r,|dA(u, v).

Therefore, | = // f(x(u,v),y(u,v),z(u,v))|r, x r,|dA(u, v).
D



Example 1.

> Evaluate / = [[ x*dS where S is the unit sphere.

» We will first evaluate | using spherical coordinates:
r(¢,0) = (singcosf,singsinf,cosp), 0<¢p<m 0<6<2r

» In the last lecture, we showed that dS = sin ¢ dA(&, 6).
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» Since x2 = sin? <;5cos2 0, we have

=21 pop=m g 2
| = / / sin® ¢ cos? Odpdl = / sin® ¢do / cos? 0d6
0 0 0 0

s l T
in (1 — cos® p)dp = | — = cos®
/0 sin (1 — cos” ¢)d¢ [ cos¢ + 5 €S d)}o 3
27 27
/0 cos? 0do = E cos 2t + %}0 =T

| = =m.
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Graph parameterization

» Consider a surface S given as the graph of z = F(x,y), (x,y) € D.
» We introduce the graph parameterization

r=xi+yj+f(x,y)k

> Recall that the surface element is given by dS = |r, x r,|dA.
» Calculating further,
re =i+ Fk
r,=j+ Fk
rexr,=—Fi-Fj+k

d5:|rx><|'y|dA: 1+F3+F3dA
/:// f(x,y,z)dsz// f(x,y, F(x,y))\/1 + F2 + F2dA.
s D



Example 1 cont.

> Evaluate / = [[ x*dS where S is the unit sphere using the graph

parameterization z = £+/1 — x2 — y2 where x> + y? < 1.

0z X 0z y

» Observe that F, = il F, = S
» Thus, for the upper hemi-sphere S, we have

2 2 2
LR B
Sy D z V4 D Z

where D is the unit disk x? + y? < 1 and where z = /1 — x2 — y2.

=1
r r3

—dr
r=0 V 1-—- f2
» Making the substitition, s = /1 — r2, ds = fﬁdr, we have

r=1 r3 s=0 ) 2
dr=— 1—5%)ds ==
/r=0 V1—r? /s:l ( ) 3

» Therefore, 11 = %7‘(. By symmetry, | =2/, = %71', in agreement with
the preceding calculation.

27
» Switching to polar coordinates, /I, = / cos? 0do
0




Example 2

> Evaluate / = [[; ydS where S is the graph of
z:x+y2, 0<x<1,0<y<2.

> Letting f(x,y) = x + y?, we have

k=1 f,=2y
dA = \/1+ f2+£2 = \/2+4y? = V2,/1 + 22

» Therefore,

x=1 py=2
/:ﬁ/ / y\/1+ 2y2dydx
x=0 Jy

=0

—Vaxias 2y2)3/2‘2
6 0

27 -1 1
= V2 L = Vax



Orientation

» Let r(u,v) = x(u,v)i+ y(u,v)j+ z(u, v)k be a parameterized
surface. Recall that N(u, v) =r, X r, is a normal vector to the
surface at r(u,v).

» The unit normal vector at r(u, v) is

ry, Xr

n(u, V) = #7

[ry <1y
which has the same direction as N but is normalized so that |n| = 1.
» By exchanging the order of v and v we obtain the vector
r, Xr
vy _n(u7 V),

[Py X ry|

which is also a unit normal.

» Indeed every point on the surface has two unit normals, for the
reason that a surface has 2 sides. A choice of unit normal amounts
to a choice of orientation of the surface.

> Reversing the order of u and v reverses the sign of the unit normal,
and thereby reverses the orientation.



Flux integrals

» Let F(x,y,z) = P(x,y,z)i+ Q(x,y,z)j+ R(x,y,z)k be a vector
field on a surface S. The integral [[(F-ndS is called a flux
integral, because it measure the flow (flux) of F across S.

» Whether the flow is accounted as positive or negative depends on
the choice of orientation of S.

» Let r(u,v), (u,v) € D be a parameterization of S. Recall that

r, Xr,

dS = |r, xr,|dA =
[r, x ry,|

It follows that

//F ndS = // (ry x r,)dA.

» In working with flux integrals, it is convenient to define
dS = (r, x r,)dA, which allows us to express a flux integral as

[ Fonas= [[F-as.



Example

>

>

Calculate the flux of F(x, y, z) = zi + yj + xk across the unit sphere
X2+y?+22=1.
As before, we use the spherical coordinate parameterization

r(¢,0) =singcosbi+sinpsinfj+cosgk, 0<p<m 0<6<2r

In Lecture 12, we showed n = sin¢r(¢,0), and dS = sin ¢dA. Note
that, n(7/2,0) =i, which is an outward pointing normal. This
means that we are counting outward flux as positive. If we
re-ordered the parameters as 6, ¢, then the unit normal would point
inside the sphere, and the outward flux would count as negative.
Putting it all together,

F.-r=(zi+yj+ xk) - (xi + yj + zk) = 2xz + y?

// -dS = // sin ¢ 2sin ¢ cos ¢ cos O + sin? ¢ sin? 0)dA

:2/ cos@d@/ sin ¢cos¢d¢>+/ sin 0d9/ sin® ¢d¢
6=0 $=0 0 0

4
=0+ = 3" (a net outward flow).



Graph parameterizations.

> Consider a flux integral over a graph surface z = f(x, y),(x,y) € D.

» As before, we parameterize the graph as

r(x,y) = xi+yj+ f(x,y)k,
dS = (re x r,)dA = (—£i — f,j + k)dA.

» Example 5. Consider F = yi + xj 4+ zk and S the union of
z=1—x?>— y? and the plane z = 0 restricted to x> + y? < 1.

» We will orient S so that outward flux is positive. Since
re X r, = 2xi + 2yj + k points upward, the outward orientation is
compatible with the order x, y.

> Let S; be the top portion of S and S, the bottom portion. We have

/1—//SlF~dS—//D(4xy+(l—x2—y2))dA(x,y).



Example 5 cont.

» Switching to polar coords,

27 1
L= / / (4r? cosOsin O + 1 — r?)rdrdf
o Jo

1 2 1
:/ 4r3dr/ cosfsin 9d9+27r/ (r — r*)dr
0 0 0

1 1 m

» The bottom portition S, is just D, the unit disk in the x, y plane.
Thus, the parameterization is ry(x, y) = xi + yj + Ok so that N = k
points in the wrong direction. We need to switch the order of the
X,y variables so that N =r, x r, = —k.

» Thus,
/2:// F~dS://0dA:O
S, D

> The total flux is therefore ) + h = 7/2.



