Lecture 13
 Surface and Flux Integrals

R. Milson

Math 2002, Winter 2020

Outline

- Text: section 16.7
- Unoriented surface integrals
- Example
- Graph parameterization
- The normal vector and orientation
- Flux integrals
- Examples
- Flux integrals using graph parameterization

Unoriented surface integrals

- A surface S is a 2-dimensional subset of 3-dimensional space, that can be parameterized using 3 functions of 2 variables:

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D
$$

- An unoriented surface integral

$$
I=\iint_{S} f(x, y, z) d S
$$

is a weighted generalization of the surface area integral $\iint_{S} d S$.

- Indeed, if we intepret $f(x, y, z)$ as a density function, then I represents the mass of the 2-dimensional object in question.
- In the previous lecture, we demonstrated that

$$
d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A(u, v)
$$

Therefore, $I=\iint_{D} f(x(u, v), y(u, v), z(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A(u, v)$.

Example 1.

- Evaluate $I=\iint_{S} x^{2} d S$ where S is the unit sphere.
- We will first evaluate I using spherical coordinates:

$$
\mathbf{r}(\phi, \theta)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi), \quad 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi
$$

- In the last lecture, we showed that $d S=\sin \phi \mathrm{d} A(\phi, \theta)$.
- Since $x^{2}=\sin ^{2} \phi \cos ^{2} \theta$, we have

$$
\begin{gathered}
I=\int_{0}^{\theta=2 \pi} \int_{0}^{\phi=\pi} \sin ^{3} \phi \cos ^{2} \theta d \phi d \theta=\int_{0}^{\pi} \sin ^{3} \phi d \phi \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \\
\int_{0}^{\pi} \sin \phi\left(1-\cos ^{2} \phi\right) d \phi=\left[-\cos \phi+\frac{1}{3} \cos ^{3} \phi\right]_{0}^{\pi}=\frac{4}{3} \\
\int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\left[\frac{1}{4} \cos 2 t+\frac{t}{2}\right]_{0}^{2 \pi}=\pi \\
I=\frac{4}{3} \pi .
\end{gathered}
$$

Graph parameterization

- Consider a surface S given as the graph of $z=F(x, y),(x, y) \in D$.
- We introduce the graph parameterization

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}
$$

- Recall that the surface element is given by $d S=\left|\mathbf{r}_{x} \times \mathbf{r}_{v}\right| \mathrm{d} A$.
- Calculating further,

$$
\begin{aligned}
& \mathbf{r}_{x}=\mathbf{i}+F_{x} \mathbf{k} \\
& \mathbf{r}_{y}=\mathbf{j}+F_{y} \mathbf{k} \\
& \mathbf{r}_{x} \times \mathbf{r}_{y}=-F_{x} \mathbf{i}-F_{y} \mathbf{j}+\mathbf{k} \\
& d S=\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| \mathrm{d} A=\sqrt{1+F_{x}^{2}+F_{y}^{2}} \mathrm{~d} A \\
& I=\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, F(x, y)) \sqrt{1+F_{x}^{2}+F_{y}^{2}} \mathrm{~d} A .
\end{aligned}
$$

Example 1 cont.

- Evaluate $I=\iint_{S} x^{2} d S$ where S is the unit sphere using the graph parameterization $z= \pm \sqrt{1-x^{2}-y^{2}}$ where $x^{2}+y^{2} \leq 1$.
- Observe that $F_{x}=\frac{\partial z}{\partial x}=-\frac{x}{z}, \quad F_{y}=\frac{\partial z}{\partial x}=-\frac{y}{z}$.
- Thus, for the upper hemi-sphere S_{+}, we have

$$
I_{+}=\iint_{S_{+}}=\iint_{D} x^{2} \sqrt{1+\frac{x^{2}}{z^{2}}+\frac{y^{2}}{z^{2}}} \mathrm{~d} A=\iint_{D} \frac{x^{2}}{z} \mathrm{~d} A
$$

where D is the unit disk $x^{2}+y^{2} \leq 1$ and where $z=\sqrt{1-x^{2}-y^{2}}$.

- Switching to polar coordinates, $I_{+}=\int_{0}^{2 \pi} \cos ^{2} \theta d \theta \int_{r=0}^{r=1} \frac{r^{3}}{\sqrt{1-r^{2}}} d r$
- Making the substitition, $s=\sqrt{1-r^{2}}, d s=-\frac{r}{\sqrt{1-r^{2}}} d r$, we have

$$
\int_{r=0}^{r=1} \frac{r^{3}}{\sqrt{1-r^{2}}} d r=-\int_{s=1}^{s=0}\left(1-s^{2}\right) d s=\frac{2}{3}
$$

- Therefore, $I_{+}=\frac{2}{3} \pi$. By symmetry, $I=2 I_{+}=\frac{4}{3} \pi$, in agreement with the preceding calculation.

Example 2

- Evaluate $I=\iint_{S} y d S$ where S is the graph of $z=x+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 2$.
- Letting $f(x, y)=x+y^{2}$, we have

$$
\begin{aligned}
f_{x} & =1 \quad f_{y}=2 y \\
\mathrm{~d} A & =\sqrt{1+f_{x}^{2}+f_{y}^{2}}=\sqrt{2+4 y^{2}}=\sqrt{2} \sqrt{1+2 y^{2}}
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
I & =\sqrt{2} \int_{x=0}^{x=1} \int_{y=0}^{y=2} y \sqrt{1+2 y^{2}} d y d x \\
& =\sqrt{2} \times\left.\frac{1}{6}\left(1+2 y^{2}\right)^{3 / 2}\right|_{0} ^{2} \\
& =\sqrt{2} \times \frac{27-1}{6}=\sqrt{2} \times \frac{13}{3}
\end{aligned}
$$

Orientation

- Let $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ be a parameterized surface. Recall that $\mathbf{N}(u, v)=\mathbf{r}_{u} \times \mathbf{r}_{v}$ is a normal vector to the surface at $\mathbf{r}(u, v)$.
- The unit normal vector at $\mathbf{r}(u, v)$ is

$$
\mathbf{n}(u, v)=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|},
$$

which has the same direction as \mathbf{N} but is normalized so that $|\mathbf{n}|=1$.

- By exchanging the order of u and v we obtain the vector

$$
\frac{\mathbf{r}_{v} \times \mathbf{r}_{u}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}=-\mathbf{n}(u, v)
$$

which is also a unit normal.

- Indeed every point on the surface has two unit normals, for the reason that a surface has 2 sides. A choice of unit normal amounts to a choice of orientation of the surface.
- Reversing the order of u and v reverses the sign of the unit normal, and thereby reverses the orientation.

Flux integrals

- Let $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a vector field on a surface S. The integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ is called a flux integral, because it measure the flow (flux) of \mathbf{F} across S.
- Whether the flow is accounted as positive or negative depends on the choice of orientation of S.
- Let $\mathbf{r}(u, v),(u, v) \in D$ be a parameterization of S. Recall that

$$
d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A \quad \mathbf{n}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

It follows that

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S=\iint_{D} \mathbf{F}(r(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) \mathrm{d} A .
$$

- In working with flux integrals, it is convenient to define $\mathrm{d} \mathbf{S}=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) \mathrm{d} A$, which allows us to express a flux integral as

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S=\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S} .
$$

Example

- Calculate the flux of $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ across the unit sphere $x^{2}+y^{2}+z^{2}=1$.
- As before, we use the spherical coordinate parameterization

$$
\mathbf{r}(\phi, \theta)=\sin \phi \cos \theta \mathbf{i}+\sin \phi \sin \theta \mathbf{j}+\cos \phi \mathbf{k}, \quad 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi
$$

- In Lecture 12, we showed $\mathbf{n}=\sin \phi \mathbf{r}(\phi, \theta)$, and $\mathrm{d} S=\sin \phi d A$. Note that, $\mathbf{n}(\pi / 2,0)=\mathbf{i}$, which is an outward pointing normal. This means that we are counting outward flux as positive. If we re-ordered the parameters as θ, ϕ, then the unit normal would point inside the sphere, and the outward flux would count as negative.
- Putting it all together,

$$
\begin{aligned}
& \mathbf{F} \cdot \mathbf{r}=(z \mathbf{i}+y \mathbf{j}+x \mathbf{k}) \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=2 x z+y^{2} \\
& \iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \sin \phi\left(2 \sin \phi \cos \phi \cos \theta+\sin ^{2} \phi \sin ^{2} \theta\right) d A \\
& \quad=2 \int_{\theta=0}^{2 \pi} \cos \theta \mathrm{~d} \theta \int_{\phi=0}^{\pi} \sin ^{2} \phi \cos \phi \mathrm{~d} \phi+\int_{0}^{2 \pi} \sin ^{2} \theta \mathrm{~d} \theta \int_{0}^{\pi} \sin ^{3} \phi \mathrm{~d} \phi \\
& =0+\frac{4}{3} \pi=\frac{4}{3} \pi \text { (a net outward flow). }
\end{aligned}
$$

Graph parameterizations.

- Consider a flux integral over a graph surface $z=f(x, y),(x, y) \in D$.
- As before, we parameterize the graph as

$$
\begin{aligned}
\mathbf{r}(x, y) & =x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}, \\
\mathrm{d} \mathbf{S} & =\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) \mathrm{d} A=\left(-f_{x} \mathbf{i}-f_{y} \mathbf{j}+\mathbf{k}\right) \mathrm{d} A .
\end{aligned}
$$

- Example 5. Consider $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and S the union of $z=1-x^{2}-y^{2}$ and the plane $z=0$ restricted to $x^{2}+y^{2} \leq 1$.
- We will orient S so that outward flux is positive. Since $\mathbf{r}_{x} \times \mathbf{r}_{y}=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}$ points upward, the outward orientation is compatible with the order x, y.
- Let S_{1} be the top portion of S and S_{2} the bottom portion. We have

$$
I_{1}=\iint_{S_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{D}\left(4 x y+\left(1-x^{2}-y^{2}\right)\right) d A(x, y) .
$$

Example 5 cont.

- Switching to polar coords,

$$
\begin{aligned}
I_{1} & =\int_{0}^{2 \pi} \int_{0}^{1}\left(4 r^{2} \cos \theta \sin \theta+1-r^{2}\right) r d r d \theta \\
& =\int_{0}^{1} 4 r^{3} d r \int_{0}^{2 \pi} \cos \theta \sin \theta d \theta+2 \pi \int_{0}^{1}\left(r-r^{3}\right) d r \\
& =0+2 \pi\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{\pi}{2}
\end{aligned}
$$

- The bottom portition S_{2} is just D, the unit disk in the x, y plane. Thus, the parameterization is $\mathbf{r}_{2}(x, y)=x \mathbf{i}+y \mathbf{j}+0 \mathbf{k}$ so that $\mathbf{N}=\mathbf{k}$ points in the wrong direction. We need to switch the order of the x, y variables so that $\mathbf{N}=\mathbf{r}_{y} \times \mathbf{r}_{x}=-\mathbf{k}$.
- Thus,

$$
I_{2}=\iint_{S_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{D} 0 d A=0
$$

- The total flux is therefore $I_{1}+I_{2}=\pi / 2$.

