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Statement of Theorem

I Stokes theorem is the 3D generalization of Green’s Theorem that
asserts an equality between a circulation integral and a flux integral.

I The precise statement is∫
C

F · dr =

∫∫
S

curlF · dS

where S is an oriented surface and C a closed curve with matching
orientation. This means that if our right hand matches the
circulation along C , then the thumb will match the direction of the
normal vector to S .



2D version of Stoke’s Theorem

I Suppose that C is a 2D simple closed curve and that S is a
parameterization of a 2D domain D corresponding to the interior of
C . We orient C counter-clockwise. To obtain a matching orientation
for S we take N = k; i.e. we count an upward flux as positive.

I For a 2D vector field F(x , y) = P(x , y)i + Q(x , y)j, the left-side of
Stokes’ formula is the circulation integral∫

C

F · dr =

∫
C

P(x , y)dx + Q(x , y)dy .

I We have curlF = (Qx − Py )k, so the right side of Stokes’ Formula is∫∫
D

(Qx − Py )dA.

I Thus, in 2D, Stoke’s Theorem reduces to Green’s Theorem:∮
C

Pdx + Qdy =

∫∫
D

(Qx − Py )dA.



Example 1

I Consider the vector field F = −y2i + x j + z2k and let S be the part
of the plane y + z = 2 bounded by the cylinder x2 + y2 = 1.

I We may regard S as the graph of the function z = f (x , y) = 2− y
restricted to the domain D = {(x , y) : x2 + y2 < 1}. This gives us

dS = −fx i− fy j + k = (j + k)dA

I To evaluate the RHS of the Stokes’ formula, we have

curlF =

∣∣∣∣∣∣
i j k
Dx Dy Dz

−y2 x z2

∣∣∣∣∣∣ = (1 + 2y)k

curlF · dS = (1 + 2y)dA

I Using polar coordinates, we obtain∫∫
S

curlF · dS =

∫ 2π

0

∫ 1

0

(1 + 2r sin t)r dr dθ = π + 0 = π



Example 1 cont.

I Parameterizing C as

r(t) = cos(t)i + sin(t)j + (2− sin(t))k, 0 ≤ t ≤ 2π

we obtain∫
C

F · dr =

∫
C

−y2dx + xdy + z2dz

=

∫ 2π

0

(
(− sin2 t)(− sin t) + cos2 t + (2− sin t)2(− cos t)

)
dt

=

∫ 2π

0

(
sin3 t + cos2 t − 4 cos t + 4 sin t cos t − sin2 t cos t

)
dt

= 0 + π + 0 + 0 + 0 = π

I The calculated values of the LHS and the RHS of the Stokes’
formula agree.



Example 2

I Consider the vector field F = xz i + yz j + xyk. and let S be the
spherical cap formed by x2 + y2 + z2 = 4 inside the cylinder
x2 + y2 = 1.

I We regard S as the graph of a function

f (x , y) =
√

4− x2 − y2

restricted to the domain D = {(x , y) : x2 + y2 ≤ 1}. This gives us

dS =
x i√

4− x2 − y2
+

y j√
4− x2 − y2

+ k.

I To evaluate the RHS of the Stokes’ formula, we have

curlF =

∣∣∣∣∣∣
i j k
Dx Dy Dz

xz yz xy

∣∣∣∣∣∣ = (x − y)i + (x − y)j



Example 2 cont

I Switching to polar coordinates, we obtain∫∫
S

curlF · dS =
(x − y)(x + y)√

4− x2 − y2
dA

=

∫ 2π

0

∫ 1

0

r3√
4− r2

cos(2t)drdt = 0

I We parameterize the curve C as

x = cos t, y = sin t, z =
√

3, 0 ≤ t ≤ 2π.

I The LHS of the Stokes formula is then∫
C

F · dr =

∫
C

xzdx + yzdy + xydz

=

∫ 2π

0

√
3 cos t(− sin t) +

√
3 sin t cos t = 0

I Again, we have illustrated the agreement between the LHS and RHS
of the Stokes’ formula .



Proof of Stokes’ Theorem

I Here we give the proof of Stokes’ Theorem for the special case
where the surface S is the graph of a function z = f (x , y) restricted
to a 2-dimensional domain (x , y) ∈ D. This allows us to reduce the
proof of ST to that of Green’s Theorem.

I For such a surface, we have a parameterization ready at hand:

r(x , y) = x i + y j + f (x , y)k, (x , y) ∈ D.

We can now make use of a formula from the lecture on
parameterized surfaces:

dS = (−fx i + fy j + k)dA

I Writing F = P i + Qj + Rk, we have

curlF = (Ry − Qz)i + (Pz − Rx)j + (Qx − Py)k∫∫
S

curlF · dS =

∫∫
D

(fx(Qz − Ry ) + fy (Rx − Pz) + Qx − Py ) dA



Proof of ST cont.

I Let C1 be the 2D curve that serves as the boundary of D. For the
LHS of the Stokes’ formula, we begin by parameterizing C1 as
x = g(t), y = h(t), a ≤ t ≤ b, and then lift that to a
parameterization of C by setting

r(t) = g(t)i + h(t)j + f (g(t), h(t))k, a ≤ t ≤ b.

Let us suppose that S has an upward orientation. In order to obtain
a matching orientation of C , we must orient C1 counter-clockwise.

I Evaluating the LHS of the Stokes’ formula, we obtain∫
C

F · dr =

∫ b

a

P(g(t), h(t), f (g(t), h(t))g ′(t)dt+

+

∫ b

a

Q(g(t), h(t), f (g(t), h(t))h′(t)dt+

+

∫ b

a

R(g(t), h(t), f (g(t), h(t))
d

dt
f (g(t), h(t))dt



Proof part 3.
I Observe that

d

dt
f (g(t), h(t)) = fx(g(t), h(t))g ′(t) + fy (g(t), h(t))h′(t).

I Using the calculations on the preceding slide, we can now rewrite the
LHS of the Stokes’ formula as∫

C

F · dr =

∫
C1

(P(x , y , f (x , y)) + R(x , y , f (x , y))fx(x , y)) dx+

+

∫
C1

(Q(x , y , f (x , y)) + R(x , y , f (x , y))fy (x , y)) dy

I Finally, we apply Green’s Theorem to conclude that∫
C

F · dr =

∫∫
D

∂

∂x
(Q(x , y , f (x , y)) + R(x , y , f (x , y))fy (x , y)) dA

−
∫∫

D

∂

∂y
(P(x , y , f (x , y)) + R(x , y , f (x , y))fx(x , y)) dA

I Expanding the above and cancelling the fxy terms, we obtain the
same expression we did when evaluating the RHS.



Example 1 revisited
I Let’s return to example 1. This time, instead of fully evaluating the

LHS let us leave it as∫
C

F · dr =

∫
C

−y2dx + xdy + z2dz

=

∫
C1

−y2dx + xdy + (2− y)2(−2dy)

=

∫
C1

−y2dx + (x − 8 + 8y − 2y2)dy

Here we are using the substitution z = f (x , y) = 2− y , dz = −2y .
I Let us leave the RHS as∫∫

S

curlF · dS =

∫∫
D

(1 + 2y)dA.

I We re-expressed the LHS as a 2D line integral with
P = −y2, Q = x − 8 + 8y − 2y2. This gives Qx − Py = 1 + 2y .

I Now we clearly see how LHS and RHS of Stokes’ theorem agree
because, in the case of a graph, the relation reduces to the
2-dimensional Green’s Theorem.



Curl via Stokes’ Theorem
I Stokes Theorem provides a geometric interpretation of curl.
I Let Sa be a disk of radius a around a fixed point p0 oriented so as to

be perpendicular to a fixed unit vector n, and Ca be the boundary of
this disk. For a given 3D vector field F, Stokes’ Theorem tells us that∫

Cr

F · dr =

∫∫
Sr

curlF · dS =

∫∫
Sa

(curlF · n)dS

I If p is close to p0, then curlF(p) ≈ curlF(p0). Hence,∫
Cr

F · dr ≈ (curlF(p0) · n)

∫∫
Sa

dS = (curlF(p0) · n)πa2

where the right-side factor represents the area of Sa. In the limit,

curlF(p0) · n = lim
a→0

1

πa2

∫
Cr

F · dr

I The above expression is maximized if n points in the direction of
curlF(p0). We may therefore interpret the magnitude of curlF(p0)
as the amount of circulation caused by F near p0, and interpret the
direction of curlF(p0) as the orientation of that circulation.


