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Statement of Theorem

>

>

Stokes theorem is the 3D generalization of Green's Theorem that
asserts an equality between a circulation integral and a flux integral.

The precise statement is

/F~dr://cur|F-dS
c S

where S is an oriented surface and C a closed curve with matching
orientation. This means that if our right hand matches the
circulation along C, then the thumb will match the direction of the
normal vector to S.



2D version of Stoke's Theorem

» Suppose that C is a 2D simple closed curve and that S is a
parameterization of a 2D domain D corresponding to the interior of
C. We orient C counter-clockwise. To obtain a matching orientation
for S we take N = k; i.e. we count an upward flux as positive.

» For a 2D vector field F(x,y) = P(x,y)i + Q(x,y)j, the left-side of
Stokes’ formula is the circulation integral

/F.dr:/ P(x,y)dx + Q(x, y)dy.
c C

» We have curl F = (Q« — P, )k, so the right side of Stokes’ Formula is

//D(QX — P,)dA.

» Thus, in 2D, Stoke's Theorem reduces to Green's Theorem:

f Pdx + Qdy = // (Q« — P,)dA.
C D



Example 1

» Consider the vector field F = —y?i + xj + z%k and let S be the part
of the plane y + z = 2 bounded by the cylinder x> + y? = 1.

» We may regard S as the graph of the function z=f(x,y) =2—y
restricted to the domain D = {(x,y): x? + y? < 1}. This gives us

dS=—fi—fj+k=(+k)dA
» To evaluate the RHS of the Stokes' formula, we have
i j k

curlF=|Dx D, D,|=(1+2y)k
-y x Z?

curl F-dS = (1 + 2y)dA

» Using polar coordinates, we obtain

27 1
//cur|F~dS:/ /(1+2rsint)rdrd9:7r+0:7r
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Example 1 cont.

> Parameterizing C as
r(t) = cos(t)i+sin(t)j+ (2 —sin(t))k, 0<t <2

we obtain
/F~dr:/—y2dx—|—xdy+22dz
C C
27
= / ((—sin®t)(—sint) + cos® t + (2 — sin t)*(— cos t)) dt
0
2
:/ (sin3t+cos2t—4cost+4sintcost—sinztcost)dt
0

=04+74+0+0+0=mn

» The calculated values of the LHS and the RHS of the Stokes’
formula agree.



Example 2

» Consider the vector field F = xzi + yzj + xyk. and let S be the
spherical cap formed by x? + y? + z? = 4 inside the cylinder
X2+ y? =1

> We regard S as the graph of a function

f(x,y) = v4—x2—y?

restricted to the domain D = {(x,y) : x> + y? < 1}. This gives us

_ xi n yi
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» To evaluate the RHS of the Stokes' formula, we have

ds +k.

i j k
curlF=|D, D, D,|=(x—-y)i+(x—y)j
Xz yz xy



Example 2 cont

» Switching to polar coordinates, we obtain

//ScurIF-dS: (X;_y))f;jyygdA

27 1 r3
= cos(2t)drdt =0
/0 /o V4 —r? (29

» We parameterize the curve C as

X =cost, y=sint, z:\@, 0<t< 2.

» The LHS of the Stokes formula is then
/ F-dr= / xzdx + yzdy + xydz
c C

27
= V3cost(—sint) 4+ V3sintcost =0
0

> Again, we have illustrated the agreement between the LHS and RHS
of the Stokes’ formula .



Proof of Stokes' Theorem

» Here we give the proof of Stokes' Theorem for the special case
where the surface S is the graph of a function z = f(x, y) restricted
to a 2-dimensional domain (x, y) € D. This allows us to reduce the
proof of ST to that of Green's Theorem.

» For such a surface, we have a parameterization ready at hand:
r(x,y) =xi+yi+f(x,y)k, (xy)eD.

We can now make use of a formula from the lecture on
parameterized surfaces:

dS = (—fi+f,j+k)dA
» Writing F = Pi+ Qj + Rk, we have

curlF = (Ry — Qz)i + (Pz — Rx)j + (Qx — Py)k

//curIF ds — // (@ = R)+ £,(Re — P.) + Qs — P,) dA



Proof of ST cont.

» Let C; be the 2D curve that serves as the boundary of D. For the
LHS of the Stokes’ formula, we begin by parameterizing C; as
x =g(t), y = h(t), a <t < b, and then lift that to a
parameterization of C by setting

r(t) = g(t)i+ h(t)j+ f(g(t), h(t))k, a<t<b.

Let us suppose that S has an upward orientation. In order to obtain
a matching orientation of C, we must orient C; counter-clockwise.

» Evaluating the LHS of the Stokes’ formula, we obtain
b
L Fedr= [ Plate). ne). Flate) e ()
C
+ [ (o), 10 a0, D (e
+ / R(g(1), h(t), F(8(2), h(1) - F(&(2), h(t))dt



Proof part 3.
» Observe that
%f(g(f), h(t)) = f(g(t), h(t))g'(t) + £,(g(t), h(t))h'(t).

» Using the calculations on the preceding slide, we can now rewrite the
LHS of the Stokes’ formula as

JFear= [ (Pl Fy)) + Rixy. Fle)fley) det
- (@, Flx ) + ROy, Fe ) G y)

> Finally, we apply Green's Theorem to conclude that
[ Feae= [[ 2@ f)) + Ry, flx ) (x,) 04

_// ag(P(x,y,f(x,y))-l-R(X,Y»f(xa)/))fx(xv)/))dA
D9y

» Expanding the above and cancelling the £, terms, we obtain the
same expression we did when evaluating the RHS.



Example 1 revisited

P> Let's return to example 1. This time, instead of fully evaluating the
LHS let us leave it as

/F~dr:/fy2dx+xdy+z2dz
c c
= [ —ydxs xdy + (2 yP(-2y)
G
:/ —y?dx + (x — 8 4 8y — 2y?)dy
G

Here we are using the substitution z = f(x,y) =2 — y, dz = —2y.
> Let us leave the RHS as

//scurlF-dS://D(l—l—Zy)dA.

> We re-expressed the LHS as a 2D line integral with
P=—y2 Q=x—8+8y—2y2 This gives Q. — P, = 1 +2y.
» Now we clearly see how LHS and RHS of Stokes’ theorem agree
because, in the case of a graph, the relation reduces to the
2-dimensional Green's Theorem.



Curl via Stokes’ Theorem

» Stokes Theorem provides a geometric interpretation of curl.

> Let S, be a disk of radius a around a fixed point pg oriented so as to
be perpendicular to a fixed unit vector n, and C, be the boundary of
this disk. For a given 3D vector field F, Stokes' Theorem tells us that

/F-dr:// curIF~dS:// (curlF-n)dS
Cr S, S,

» If p is close to pg, then curl F(p) ~ curl F(po). Hence,

/ F - dr = (curl F(po) // dS = (curl F(po) - n)ma
G

where the right-side factor represents the area of S,. In the limit,

curl F(po) - n = lim 1 F.-dr
a—0 ma C,

» The above expression is maximized if n points in the direction of
curl F(po). We may therefore interpret the magnitude of curl F(po)
as the amount of circulation caused by F near pg, and interpret the
direction of curl F(pg) as the orientation of that circulation.



