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The divergence theorem

> Let S be a closed surface enclosing a 3D region E oriented so that
the normal vector points outward. Let F = Pi+ Qj + Rk be a 3D

vector field. Then,
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» In physics, the above relation is known as Gauss' law. This
fundamental principle asserts that The total of the electric flux out
of a closed surface is proportional to the charge enclosed.

» Recall that F is called incompressible if divF = 0. As a particular
case of the divergence theorem, we conclude that for an
incomressible F, the flux across any closed membrane is 0.

» More generally, the divergence theorem should be regarded as a
conservation law for fluxes. A positive divergence div F represents an
expanding flow F, while a negative divergence represents
compression. In the first case, the net outward flux is positive; the
material flows out of the membrane. A negative divergence implies
that the total flux is negative and that the “stuff” represented by F
is concentrating inside the membrane.



Example 1

> Let's verify the divergence theorem for the flux of F = zi + yj + xk
across the boundary of the unit ball B.

» A direct calculation shows that divF =0+ 1+ 0 = 1. Hence, the
RHS of the divergence law is equal to the volume of the unit sphere:
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» To calculate the LHS, we parameterize using spherical coordinates:
r(¢,0) = (singcosf,singsinf,cosp), 0<¢o<m, 0<6 <27
» On S, the unit sphere, n = xi + yj + zk and dS = sin(¢)dA(¢, 9).
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Proof of the Divergence Theorem

» We will prove the Divergence Theorem for the special case where E
is a domain bounded by two graphs

E={(x,y,2): (x,y) €D, f(x,y) <z<g(x,y)}, DCR?

and the vector field has the special form F(x,y,z) = R(x, y, z)k.

» The general proof relies on a dissection argument similar to the
dissection argument we employed when discussing Green’s Theorem.
A general region E can be subdivided into a finite union of special
regions E = E; U - - U E, with fluxes between the sub-regions
cancelling each other out, and only the flux across the outer
boundary of E contributing to the overall total.

» The general proof for vector fields with all 3 components can then
be obtained by permuting the coordinates x, y, z.



Proof part 2.

» The boundary S of a domain

E={(x,y,2): (x,y) €D, f(x,y) <z < g(x,y)}

naturally breaks up into 3 components:

S1={(xy,2): (x,y) € D, z=g(x,y)}

S ={(xy)e C: f(x,y) <z<g(xy)}

53 = {(Xayaz): (Xv)/) € D, zZ = f(Xay)}
Intuitively, S; is the “ceiling, Ss3 is the “floor”, and S, represents the
“wall” with C a curve that is the boundary of the 2D region D.

» Now the normal vector to S, is parallel to xy plane, and hence the
flux of F = Rk across S, is zero.

» Choosing an upward orientation for both S; and S3 we obtain

//S(Rk)'ds://Sl(Rk)'ds_/[g3(Rk)-dS

because we wish to count an outward flux across S as positive.



Proof part 3.

» To calculate the flux across the “ceiling” S; and the “floor” S3 we
introduce parameterizations

ri(x,y) =xi+yi+glx,yk, (x,y)eD
r3(x,y) =xi+yj+f(x,y)k, (x,y)€D

The corresponding normal vectors are

N, =—gi—gj+k
N3 = —fi— f,j+k

» Our flux integral is therefore (remember that F = Rk),
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Proof part 4.

» Recall again that E = {(x,y,z) : (x,y) € D, f(x,y) <z <g(x,y)}
» Hence, for the RHS of the divergence theorem formula, we have
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» We now apply the fundamental theorem of calculus to the inner
integral to conclude that

J[[dvrav = [[ (Rex.y.gt00) = Recoy. fle) aa

» One the previous slide we derived that

JF-as= [[ (Rex.y.g0e0) = Ry fixp)) aa

» Therefore, the LHS of the divergence theorem matches the RHS.



Geometric definition of divergence

>

>

The divergence theorem can be used to give a geometric
characterization of the divergence operator.

Let B, be a ball of radius a about a fixed point pg, and let S, be the
corresponding boundary sphere of radius a. Let F=Pi+ Qj+ Rk
be a vector field that represents the flow of a fluid. By the
divergence theorem

//SEF-dS:///BadideV.

For small values of a, div(F)(p) ~ div(F)(p.) for p € B,. Hence,

// , divFaV = div(F)(po) » // [av - %ﬂa3(divF)(po).

Combining the above approximation with the divergence theorem,

div(F)(po) ~ VoI // .ds,

with equality attained in the limit as a — 0.

This means that, intuitively, divergence is net outward flux per unit
volume. Positive divergence means fluid is expanding; negative
divergence means that the fluid is being compressed.



Divergence theorem in 2D

» It is possible to interpret Green's Theorem ans the 2D version of the
divergence theorem. However, in order to do so, one has to
introduce a new type of line integral, one that calculates flux across
a boundary rather than a circulation.

» To that end, we measure a 2D flux using an integral of the form

/C(F-N)ds:/C(—Qi+Pj)-Tds:/C—de+de,

where F = Pi+ Q] is a 2D vector field, where C is a 2D curve,
where T is the unit tangent to C, and where N is the unit normal.
» To make sense of the above equation we must note that — Qi+ Pj is
the vector F rotated by 90 degrees counter-clockwise. Assuming
that T (the unit tangent) is obtained by rotating N in the same way,
it follows that
F-N=(-Qi+Pj)-T.

» Finally, recall that Tds = dr, and hence that

/(—Qi+Pj)~Tds:/(—Qi+Pj)dr:/ —Qdx + Pdy.
C C C



2D divergence cont.

» Next, let us introduce 2D divergence as
divF = P, + Q,.

» Finally, we can state the 2D divergence theorem as

%C(F -N)ds = //D div FdA,

where D is the interior of a closed curve C and where N is chosen to
point outward.

» The outward orientation of N means that C is being traversed in a
counter-clockwise fashion. This means that we may apply Green's
Theorem to assert that

j{C—de—f—de://D(Px—(—Qy))dA.

» We recognize the above relation as a restatement of the 2D
divergence theorem.

> In conclusion, by interpreting a line integral [ —Qdx + Pdy as a 2D
flux, rather than as a circulation integral we may interpret Green's
theorem as the 2D version of the divergence theorem.



