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The divergence theorem
I Let S be a closed surface enclosing a 3D region E oriented so that

the normal vector points outward. Let F = P i + Qj + Rk be a 3D
vector field. Then, ∫∫

S

F · dS =

∫∫∫
E

divF dV .

I In physics, the above relation is known as Gauss’ law. This
fundamental principle asserts that The total of the electric flux out
of a closed surface is proportional to the charge enclosed.

I Recall that F is called incompressible if divF = 0. As a particular
case of the divergence theorem, we conclude that for an
incomressible F, the flux across any closed membrane is 0.

I More generally, the divergence theorem should be regarded as a
conservation law for fluxes. A positive divergence divF represents an
expanding flow F, while a negative divergence represents
compression. In the first case, the net outward flux is positive; the
material flows out of the membrane. A negative divergence implies
that the total flux is negative and that the “stuff” represented by F
is concentrating inside the membrane.



Example 1
I Let’s verify the divergence theorem for the flux of F = z i + y j + xk

across the boundary of the unit ball B.
I A direct calculation shows that div F = 0 + 1 + 0 = 1. Hence, the

RHS of the divergence law is equal to the volume of the unit sphere:∫∫∫
B

dV = 4/3π.

I To calculate the LHS, we parameterize using spherical coordinates:

r(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

I On S , the unit sphere, n = x i + y j + zk and dS = sin(φ)dA(φ, θ).∫∫
S

F · dS =

∫∫
S

(F · n)dS =

∫∫
S

(2zx + y2)dS

=

∫ 2π

0

∫ π

0

(2 sin2(φ) cos(φ) cos(θ) + sin3(φ) sin2(θ))dφdθ

= 0 +

∫ 2π

0

sin3(φ)dφ

∫ π

0

sin2 θdθ

= π
[1

3
cos3 φ− cosφ

]π
0

=
4

3
π.



Proof of the Divergence Theorem

I We will prove the Divergence Theorem for the special case where E
is a domain bounded by two graphs

E = {(x , y , z) : (x , y) ∈ D, f (x , y) ≤ z ≤ g(x , y)}, D ⊂ R2,

and the vector field has the special form F(x , y , z) = R(x , y , z)k.

I The general proof relies on a dissection argument similar to the
dissection argument we employed when discussing Green’s Theorem.
A general region E can be subdivided into a finite union of special
regions E = E1 ∪ · · · ∪ En with fluxes between the sub-regions
cancelling each other out, and only the flux across the outer
boundary of E contributing to the overall total.

I The general proof for vector fields with all 3 components can then
be obtained by permuting the coordinates x , y , z .



Proof part 2.
I The boundary S of a domain

E = {(x , y , z) : (x , y) ∈ D, f (x , y) ≤ z ≤ g(x , y)}

naturally breaks up into 3 components:

S1 = {(x , y , z) : (x , y) ∈ D, z = g(x , y)}
S2 = {(x , y) ∈ C : f (x , y) ≤ z ≤ g(x , y)}
S3 = {(x , y , z) : (x , y) ∈ D, z = f (x , y)}

Intuitively, S1 is the “ceiling, S3 is the “floor”, and S2 represents the
“wall” with C a curve that is the boundary of the 2D region D.

I Now the normal vector to S2 is parallel to xy plane, and hence the
flux of F = R k across S2 is zero.

I Choosing an upward orientation for both S1 and S3 we obtain∫∫
S

(Rk) · dS =

∫∫
S1

(Rk) · dS−
∫∫

S3

(Rk) · dS

because we wish to count an outward flux across S as positive.



Proof part 3.

I To calculate the flux across the “ceiling” S1 and the “floor” S3 we
introduce parameterizations

r1(x , y) = x i + y j + g(x , y)k, (x , y) ∈ D

r3(x , y) = x i + y j + f (x , y)k, (x , y) ∈ D

The corresponding normal vectors are

N1 = −gx i− gy j + k

N3 = −fx i− fy j + k

I Our flux integral is therefore (remember that F = R k),∫∫
S

F · dS =

∫∫
S1

F · dS−
∫∫

S3

F · dS

=

∫∫
D

(R(x , y , g(x , y))− R(x , y , f (x , y))) dA



Proof part 4.
I Recall again that E = {(x , y , z) : (x , y) ∈ D, f (x , y) ≤ z ≤ g(x , y)}
I Hence, for the RHS of the divergence theorem formula, we have∫∫∫

E

divFdV =

∫∫∫
E

Rz(x , y , z)dV

=

∫∫
D

(∫ z=g(x,y)

z=f (x,y)

Rz(x , y , z)dz

)
dA

I We now apply the fundamental theorem of calculus to the inner
integral to conclude that∫∫∫

E

divFdV =

∫∫
D

(R(x , y , g(x , y))− R(x , y , f (x , y))) dA,

I One the previous slide we derived that∫∫
S

F · dS =

∫∫
D

(R(x , y , g(x , y))− R(x , y , f (x , y))) dA

I Therefore, the LHS of the divergence theorem matches the RHS.



Geometric definition of divergence
I The divergence theorem can be used to give a geometric

characterization of the divergence operator.
I Let Ba be a ball of radius a about a fixed point p0, and let Sa be the

corresponding boundary sphere of radius a. Let F = P i + Q j + R k
be a vector field that represents the flow of a fluid. By the
divergence theorem∫∫

Sa

F · dS =

∫∫∫
Ba

divFdV .

I For small values of a, div(F)(p) ≈ div(F)(pa) for p ∈ Ba. Hence,∫∫∫
Ba

divFdV ≈ div(F)(p0)×
∫∫∫

Ba

dV =
4

3
πa3(divF)(p0).

I Combining the above approximation with the divergence theorem,

div(F)(p0) ≈ 1

Vol(Ba)

∫∫
Sa

F · dS,

with equality attained in the limit as a→ 0.
I This means that, intuitively, divergence is net outward flux per unit

volume. Positive divergence means fluid is expanding; negative
divergence means that the fluid is being compressed.



Divergence theorem in 2D
I It is possible to interpret Green’s Theorem ans the 2D version of the

divergence theorem. However, in order to do so, one has to
introduce a new type of line integral, one that calculates flux across
a boundary rather than a circulation.

I To that end, we measure a 2D flux using an integral of the form∫
C

(F ·N)ds =

∫
C

(−Qi + Pj) · T ds =

∫
C

−Qdx + Pdy ,

where F = P i + Q j is a 2D vector field, where C is a 2D curve,
where T is the unit tangent to C , and where N is the unit normal.

I To make sense of the above equation we must note that −Qi + Pj is
the vector F rotated by 90 degrees counter-clockwise. Assuming
that T (the unit tangent) is obtained by rotating N in the same way,
it follows that

F ·N = (−Qi + Pj) · T.
I Finally, recall that Tds = dr, and hence that∫

C

(−Qi + Pj) · T ds =

∫
C

(−Qi + Pj)dr =

∫
C

−Qdx + Pdy .



2D divergence cont.
I Next, let us introduce 2D divergence as

divF = Px + Qy .

I Finally, we can state the 2D divergence theorem as∮
C

(F ·N)ds =

∫∫
D

divFdA,

where D is the interior of a closed curve C and where N is chosen to
point outward.

I The outward orientation of N means that C is being traversed in a
counter-clockwise fashion. This means that we may apply Green’s
Theorem to assert that∮

C

−Qdx + Pdy =

∫∫
D

(Px − (−Qy ))dA.

I We recognize the above relation as a restatement of the 2D
divergence theorem.

I In conclusion, by interpreting a line integral
∫
−Qdx + Pdy as a 2D

flux, rather than as a circulation integral we may interpret Green’s
theorem as the 2D version of the divergence theorem.


