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Complex numbers
I Multiplication by −1 represents a 180-degree turn. Two such

multiplications represent multiplication by 1, a 360-degree rotation that
produces no net change.

I Let’s introduce a special number called i which represents a rotation by
π/2 or 90 degrees. Two such rotations represent a rotation by 180
degrees. In other words i × i = −1 or i =

√
−1.

I A complex number is an expression of the form a + bi where a, b are real
numbers. A complex number a + bi represents the point (a, b).

I Complex numbers addition: (a + bi) + (c + di) = (a + c) + (b + d)i .

I The relation i2 = −1 allows us to multiply complex numbers. Thus,

(a + bi)(c + di) = ac + adi + bci + (bi)(di) = (ac − bd) + (ad + bc)i .

I Complex conjugation a + bi = a− bi .

I Complex numbers can also be divided once we note that

(a + bi)(a + bi) = (a + bi)(a− bi) = a2 + b2.

I The rule for complex division. Set z = a + bi ,w = c + di . Get

w

z
=

wz̄

zz̄
=

(c + di)(a− bi)

a2 + b2
=

ac + bd

a2 + b2
+

ad − bc

a2 + b2
i .



Complex roots

I Complex numbers arise naturally when we consider roots of equation.

I For example, the solution of a quadratic equation ax2 + bx + c = 0 is

x =
−b ±

√
b2 − 4ac

2a
.

If the number inside the square root is negative, the equation has complex
solutions.

I Example: solve x2 + x + 1 = 0. The solutions are

x = −1

2
±
√
−3

2
= −1

2
±
√

3

2
i

I Example: solve x4 = 1. We factor

x4 − 1 = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1).

Therefore, there are two real solutions, x = 1,−1 and two imaginary
solutions x = i ,−i .



The polar form of a complex number

I Let x + iy = r(cos θ + i sin θ) be a complex number, where r , θ are the
polar coordinates of the point (x , y). Recall that r =

√
x2 + y 2 is the

magnitude and θ = tan−1(y/x) is the argument.

I Multiplication using the polar form. Complex multiplication multiplies the
magnitudes and adds the arguments.

I Let z = x + iy = r(cos θ + i sin θ) and w = u + iv = ρ(cosφ+ i sinφ).
Claim: (x + iy)(u + iv) = rρ(cos(θ + φ) + i sin(θ + φ)).
Proof: By the angle addition formulas,

rρ(cos(θ + φ) + i sin(θ + φ))

= rρ(cos θ cosφ− sin θ sinφ) + irρ(sin θ cosφ+ cos θ sinφ)

= (xu − yv) + i(yu + xv)

= (x + iy)(u + iv)

The latter is exactly the value of (x + iy)(u + iv)



DeMoivre’s Formula: powers and roots of Cx numbers
I Let x + iy = r(cos θ + i sin θ) be the polar form of a complex number.

Then,
(x + iy)p = rp(cos(pθ) + sin(pθ)).

I For n = 1, 2, 3, . . . the formula is proved by repeated multiplication.

I For n = −1,−2,−3, . . . the formula is proved by observing that

(x + iy)−1 =
x − iy

x2 + y 2
= r−1(cos(−θ) + i sin(−θ))

I The formula remains correct when p is a fractional power, but we have to
take into account the multivaluedness of the argument:

x + iy = r(cos θ + i sin θ) = r(cos(θ + 2πj) + sin(θ + 2πj)),

where j = 0,±1,±2, . . .. Therefore,

(x + iy)
1
n = r

1
n

(
cos

(
θ + 2πj

n

)
+ i sin

(
θ + 2πj

n

))
,

where j = 0, 1, . . . , n − 1. Note that for j = −1,−2, . . . and for
j = n, n + 1, n + 2, . . ., the values of the root repeat. Therefore, the nth
root of a complex number also has n different values.



Euler’s formula
I Euler’s formula is the relation

e it = cos t + i sin t.

One proves this formula, by considering the Taylor series for the functions
on the left and on the right. Set x = it to obtain,

e it = 1 + it − t2

2!
− i

t3

3!
+

t4

4!
+ i

t5

5!
− t6

6!
− i

t7

7!
+ · · ·

=

(
1− t2

2!
+

t4

4!
− t6

6!
+ · · ·

)
+ i

(
t − t3

3!
+

t5

5!
− t7

7!
+ · · ·

)
= cost + i sin t

I An important application of Euler’s is a concise polar formalism for
working with complex numbers:

x + iy = r(cos θ + i sin θ) = re iθ.

I Complex multiplication: (r1e
iθ1) · (r2e iθ2) = (r1r2)e i(θ1+θ2)

I DeMoivre’s formula: (x + iy)p = (re iθ)p = rpe ipθ.

I Euler’s identity: eπi + 1 = 0



Sample calculations
1 + i =

√
2eπi/4 =

√
2(cos(π/4) + i sin(π/4)),

1− i =
√

2e−πi/4 =
√

2(cos(π/4)− i sin(π/4))

(1 + i)(1− i) = (
√

2 ·
√

2)eπi/4−πi/4 = 2(cos(0) + i sin(0)) = 2

1 + i

1− i
=

√
2√
2
e(πi/4−(−πi/4)) = cos(π/2) + i sin(π/2) = i

(1 + i)2 = (
√

2)2e2πi/4 = 2(cos(π/2) + i sin(π/2)) = 2i

(1 + i)3 = 23/2e3πi/4 = 2
√

2(cos(3π/4) + i sin(3π/4)) = −2 + 2i

i = eπi/2 = cos(π/2) + i sin(π/2)

= e5πi/2 = cos(5π/2) + i sin(5π/2)
√

4i = (4i)1/2 = 41/2e
1
2

πi
2 = 41/2(cos(π/4) + i sin(π/4)) =

√
2 + i

√
2

= 41/2e
1
2

5πi
2 = 41/2(cos(5π/4) + i sin(5π/4)) = −

√
2− i

√
2

(−1)1/3 = eπi/3 = cosπ/3 + i sinπ/3 = 1/2 + i
√

3/2

= e(π+2π)i/3 = cosπ + i sinπ = −1

= e(π+4π)i/3 = cos 5π/3 + i sin 5π/3 = 1/2− i
√

3/2

(x − eπi/3)(x − e3πi/3)(x − e5πi/3) = x3 + 1


