Lecture 16
 Complex Numbers

R. Milson
Math 2002, Winter 2020

Outline

- Text: appendix G
- Algebraic definition
- The polar form of a complex number
- DeMoivre's Formula
- Euler's Formula

Complex numbers

- Multiplication by -1 represents a 180-degree turn. Two such multiplications represent multiplication by 1 , a 360 -degree rotation that produces no net change.
- Let's introduce a special number called i which represents a rotation by $\pi / 2$ or 90 degrees. Two such rotations represent a rotation by 180 degrees. In other words $i \times i=-1$ or $i=\sqrt{-1}$.
- A complex number is an expression of the form $a+b i$ where a, b are real numbers. A complex number $a+b i$ represents the point (a, b).
- Complex numbers addition: $(a+b i)+(c+d i)=(a+c)+(b+d) i$.
- The relation $i^{2}=-1$ allows us to multiply complex numbers. Thus,

$$
(a+b i)(c+d i)=a c+a d i+b c i+(b i)(d i)=(a c-b d)+(a d+b c) i
$$

- Complex conjugation $\overline{a+b i}=a-b i$.
- Complex numbers can also be divided once we note that

$$
(a+b i) \overline{(a+b i)}=(a+b i)(a-b i)=a^{2}+b^{2}
$$

- The rule for complex division. Set $z=a+b i, w=c+d i$. Get

$$
\frac{w}{z}=\frac{w \bar{z}}{z \bar{z}}=\frac{(c+d i)(a-b i)}{a^{2}+b^{2}}=\frac{a c+b d}{a^{2}+b^{2}}+\frac{a d-b c}{a^{2}+b^{2}} i .
$$

Complex roots

- Complex numbers arise naturally when we consider roots of equation.
- For example, the solution of a quadratic equation $a x^{2}+b x+c=0$ is

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If the number inside the square root is negative, the equation has complex solutions.

- Example: solve $x^{2}+x+1=0$. The solutions are

$$
x=-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
$$

- Example: solve $x^{4}=1$. We factor

$$
x^{4}-1=\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-1)(x+1)\left(x^{2}+1\right)
$$

Therefore, there are two real solutions, $x=1,-1$ and two imaginary solutions $x=i,-i$.

The polar form of a complex number

- Let $x+i y=r(\cos \theta+i \sin \theta)$ be a complex number, where r, θ are the polar coordinates of the point (x, y). Recall that $r=\sqrt{x^{2}+y^{2}}$ is the magnitude and $\theta=\tan ^{-1}(y / x)$ is the argument.
- Multiplication using the polar form. Complex multiplication multiplies the magnitudes and adds the arguments.
- Let $z=x+i y=r(\cos \theta+i \sin \theta)$ and $w=u+i v=\rho(\cos \phi+i \sin \phi)$.

Claim: $(x+i y)(u+i v)=r \rho(\cos (\theta+\phi)+i \sin (\theta+\phi))$.
Proof: By the angle addition formulas,

$$
\begin{aligned}
& r \rho(\cos (\theta+\phi)+i \sin (\theta+\phi)) \\
& \quad=r \rho(\cos \theta \cos \phi-\sin \theta \sin \phi)+i r \rho(\sin \theta \cos \phi+\cos \theta \sin \phi) \\
& \quad=(x u-y v)+i(y u+x v) \\
& \quad=(x+i y)(u+i v)
\end{aligned}
$$

The latter is exactly the value of $(x+i y)(u+i v)$

DeMoivre's Formula: powers and roots of Cx numbers

- Let $x+i y=r(\cos \theta+i \sin \theta)$ be the polar form of a complex number. Then,

$$
(x+i y)^{p}=r^{p}(\cos (p \theta)+\sin (p \theta))
$$

- For $n=1,2,3, \ldots$ the formula is proved by repeated multiplication.
- For $n=-1,-2,-3, \ldots$ the formula is proved by observing that

$$
(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}}=r^{-1}(\cos (-\theta)+i \sin (-\theta))
$$

- The formula remains correct when p is a fractional power, but we have to take into account the multivaluedness of the argument:

$$
x+i y=r(\cos \theta+i \sin \theta)=r(\cos (\theta+2 \pi j)+\sin (\theta+2 \pi j))
$$

where $j=0, \pm 1, \pm 2, \ldots$. Therefore,

$$
(x+i y)^{\frac{1}{n}}=r^{\frac{1}{n}}\left(\cos \left(\frac{\theta+2 \pi j}{n}\right)+i \sin \left(\frac{\theta+2 \pi j}{n}\right)\right)
$$

where $j=0,1, \ldots, n-1$. Note that for $j=-1,-2, \ldots$ and for $j=n, n+1, n+2, \ldots$, the values of the root repeat. Therefore, the nth root of a complex number also has n different values.

Euler's formula

- Euler's formula is the relation

$$
e^{i t}=\cos t+i \sin t
$$

One proves this formula, by considering the Taylor series for the functions on the left and on the right. Set $x=i t$ to obtain,

$$
\begin{aligned}
e^{i t} & =1+i t-\frac{t^{2}}{2!}-i \frac{t^{3}}{3!}+\frac{t^{4}}{4!}+i \frac{t^{5}}{5!}-\frac{t^{6}}{6!}-i \frac{t^{7}}{7!}+\cdots \\
& =\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\cdots\right)+i\left(t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+\cdots\right) \\
& =\cos t+i \sin t
\end{aligned}
$$

- An important application of Euler's is a concise polar formalism for working with complex numbers:

$$
x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

- Complex multiplication: $\left(r_{1} e^{i \theta_{1}}\right) \cdot\left(r_{2} e^{i \theta_{2}}\right)=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}$
- DeMoivre's formula: $(x+i y)^{p}=\left(r e^{i \theta}\right)^{p}=r^{p} e^{i p \theta}$.
- Euler's identity: $e^{\pi i}+1=0$

Sample calculations

$$
\begin{aligned}
& 1+i=\sqrt{2} e^{\pi i / 4}=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4)), \\
& 1-i=\sqrt{2} e^{-\pi i / 4}=\sqrt{2}(\cos (\pi / 4)-i \sin (\pi / 4)) \\
&(1+i)(1-i)=(\sqrt{2} \cdot \sqrt{2}) e^{\pi i / 4-\pi i / 4}=2(\cos (0)+i \sin (0))=2 \\
& \frac{1+i}{1-i}=\frac{\sqrt{2}}{\sqrt{2}} e^{(\pi i / 4-(-\pi i / 4))}=\cos (\pi / 2)+i \sin (\pi / 2)=i \\
&(1+i)^{2}=(\sqrt{2})^{2} e^{2 \pi i / 4}=2(\cos (\pi / 2)+i \sin (\pi / 2))=2 i \\
&(1+i)^{3}=2^{3 / 2} e^{3 \pi i / 4}=2 \sqrt{2}(\cos (3 \pi / 4)+i \sin (3 \pi / 4))=-2+2 i \\
& i=e^{\pi i / 2}=\cos (\pi / 2)+i \sin (\pi / 2) \\
&=e^{5 \pi i / 2}=\cos (5 \pi / 2)+i \sin (5 \pi / 2) \\
& \sqrt{4 i}=(4 i)^{1 / 2}=4^{1 / 2} e^{\frac{1}{2} \frac{\pi i}{2}}=4^{1 / 2}(\cos (\pi / 4)+i \sin (\pi / 4))=\sqrt{2}+i \sqrt{2} \\
&=4^{1 / 2} e^{\frac{15}{2} \frac{5 \pi i}{2}}=4^{1 / 2}(\cos (5 \pi / 4)+i \sin (5 \pi / 4))=-\sqrt{2}-i \sqrt{2} \\
&(-1)^{1 / 3}=e^{\pi i / 3}=\cos \pi / 3+i \sin \pi / 3=1 / 2+i \sqrt{3} / 2 \\
&=e^{(\pi+2 \pi) i / 3}=\cos \pi+i \sin \pi=-1 \\
&=e^{(\pi+4 \pi) i / 3}=\cos 5 \pi / 3+i \sin 5 \pi / 3=1 / 2-i \sqrt{3} / 2 \\
&\left(x-e^{\pi i / 3}\right)\left(x-e^{3 \pi i / 3}\right)\left(x-e^{5 \pi i / 3}\right)=x^{3}+1
\end{aligned}
$$

