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Linear, 2nd order ODEs
I In this lecture we consider 2nd order linear ODEs (ordinary

differential equation) with constant coefficients:

ay ′′ + by ′ + cy = 0,

where a,b,c are real numbers.

I Since the equation is linear, it enjoys a property called “linear
superposition principle”. This means that a linear combination of
two particular solutions is itself a solution.

I The linear super-position principle allows us to write the general
solution of our ODE as a linear combination of two basic solutions.
The coefficients of this linear combinations are the constants of
integration.

I As the simplest example of such an ODE consder y ′′ = 0.

I There are two basic solutions: y0 = 1 and y1 = x .

I The general solution of y ′′ = 0 is therefore

y = C0y0 + C1y1 = C0 + C1x ,

where C0,C1 are arbitrary constants.



The auxilliary equation
I We are discussing differential equations of the form

ay ′′ + by ′ + cy = 0.

I Let’s look for a solution of the form y = erx . For such a function,

y ′ = ry , y ′′ = r2y

ay ′′ + by ′ + cy = y(ar2 + br + c)

I It follows that y = erx is a solution if and only if r is a root of the
quadratic equation

ar2 + br + c = 0

I We can solve this auxilliary equation using the quadratic formula:

r1, r2 = − b

2a
±
√
b2 − 4ac

2a
.

I This gives us the particular solutions y1 = er1x , y2 = er2x .
I The general solution can now be written as the linear combination

y = C1e
r1x + C2e

r2x ,

where C1,C2 are arbitrary constants.



Example 1.

I Solve y ′′ + y ′ − 6y = 0

I The auxilliary equation is

r2 + r − 6 = (r + 3)(r − 2) = 0

The roots are r1 = −3, r2 = 2.

I Therefore, the basic solutions are

y1 = e−3x , y2 = e2x .

I The general solution is

y = C1e
−3x + C2e

2x ,

where C1,C2 are arbitrary constants.



The three classes
I Quadratic equations can be divided into one of 3 classes: distinct

real roots, a double root (real), and conjugate complex roots.
I Each of these possibilities gives rise to a different class of ODEs,

named case I,II, III in the text. Case I, where both roots of the
auxilliary equation are real, was discussed above.

I Let us now discuss Case II, where the auxilliary equation has a
repeated root. If the coefficients of the quadratic equation satisfy
b2 − 4ac = 0, then

ar2 + br + c = a

(
r +

b

2a

)2

=⇒ r = − b

2a
.

I The corresponding particular solutions are y1 = erx and y2 = xerx .
I Solution y1 is obvious. Let’s verify that y2 is also a solution.

y ′2 = (rx + 1)erx y ′′2 = (r2x + 2r)erx

ay ′′2 + by ′2 + cy2 = xerx(ar2 + br + c) + erx(2ar + b) = 0

I Therefore, the general solution of the Case II equation is

y = (C1 + C2x)erx ,

where C1,C2 are arbitrary constants.



Example 2

I The ODE y”=0, discussed earlier, belongs to this class.

I The auxilliary equation is simply r2 = 0. The double root is r = 0,
so that

y = (C1 + C2x)e0x = C1 + C2x

matches the solution we obtained above.

I As a more complicated example, consider the ODE
4y ′′ + 12y ′ + 9y = 0

I The auxilliary equation is

4r2 + 12r + 9 = 4(r + 3/2)2 = 0.

I The general solution is therefore

y = (C1 + C2x)e−3/2x .



Complex roots
I Case III of ay ′′ + by ′ + cy = 0 is the case where b2 − 4ac < 0.

I This means that the roots of the indicial equation are complex:

r1, r2 = − b

2a
± i

√
c

a
− b2

4a2

I Writing r1 = s + it and r2 = s − it and applying Euler’s formula,

y1 = er1x = esx(cos(tx) + I sin(tx))

y2 = er2x = esx(cos(tx)− I sin(tx))

I Thus, using the roots of the auxilliary equation directly gives
complex-valued solutions. we can obtain real-valued basic solutions by
taking the real and imaginary parts of these:

yc = Re y1 = Re y2 =
1

2
(y1 + y2) = esx cos(tx)

ys = Im y1 = − Im y2 =
1

2i
(y1 − y2) = esx sin(tx)

I Since yc , ys are linear combinations of y1, y2, they are also solutions by the
princ. of superposition. The general real solution of a case III equation is

y = esx(C1 cos(tx) + C2 sin(tx)).



Example 3.

I Solve y ′′ − 6y ′ + 13y = 0.

I The auxilliary equation r2 − 6r + 13 = 0 has complex roots

r1, r2 = 3± 1

2

√
36− 52 = 3± 2i .

I The basic real solutions are yc = e3xcos(2x) and ys = e3xsin(2x).

I The general real solution is therefore

y = e3x(C1 cos(2x) + C2 sin(2x)).



Initial value problems (IVP)

I A general solution to a 2nd order ODE has 2 constants of
integrations. A particular solution corresponds to a particular value
of these two constants based on two constraints. - One way to
specialize to a particular solution is to impose initial conditions on y
and y ′ at a particular point. A linear 2nd-order IVP is a the ODE
plus two additional constraints

ay ′′ + by ′ + cy = 0, y(x0) = y0andy
′(x0) = y1.

I After obtaining the general solution of the ODE we apply the
constraints to obtain a linear system for the constants of integration.
Solving this linear system we obtain a particular solution that
satisfies the given initial conditions.



Example 4

I Solve the IVP

y ′′ + y ′ − 6y = 0, y(0) = 1, y ′(0) = 0.

I Earlier we obtained the general solution y = C1e
−3x + C2e

2x .

I Taking the derivative of the above gives y ′ = −3C1e
−3x + 2C2e

2x .

I Evaluating y(0) and y ′(0) and applying the initial conditions gives

C1 + C2 = 1, −3C − 1 + 2C2 = 0.

I The solution of the initial condition system is C1 = 2/5, C2 = 3/5.
Therefore, the solution of the IVP is

y =
2

5
e−3x +

3

5
e2x .

I Remember: while a general ODE possesses infinitely many solutions
(solution with parameters), the solution to an IVP is a fixed function
without parameters



Boundary value problems (BVP)

I A 2nd order linear BVP is an ODE ay ′′ + by ′ + cy = 0 together with
constraints of the form y(x1) = y1, y(x2) = y2.

I Applying these contraints to a general solution gives a system of 2
linear equations in the constants of integration.

I Solving this linear system we obtain a particular solution that
satisfies the given initial conditions.



Example 5

I Solve the BVP

y ′′ + 2y ′ + y = 0, y(0) = 1, y(1) = 3.

I The auxilliary equation is r2 + 2r + 1 = (r + 1)2 = 0.

I Since there is a double root, the general solution is

y = (C0 + C1x)e−x .

I Applying the boundary constraints gives the system

C0 = 1, (C0 + C1)e−1 = 3.

I This linear system has the solution C0 = 1,C1 = 3e− 1. Therefore,
the solution of the BVP is

y = (1 + (3e− 1)x)e−x .


