Lecture 17
 Second order linear ODEs with constant coefficients

R. Milson
Math 2002, Winter 2020

Outline

- Text: 17.1
- Linear ODEs and superposition of solutions
- General and particular solutions
- The auxilliary equation
- Case 1: distinct real roots
- Case 2: double root
- Case 3: complex roots
- Examples
- Initial Value Problems
- Boundary Value Problems
- Examples

Linear, 2nd order ODEs

- In this lecture we consider 2nd order linear ODEs (ordinary differential equation) with constant coefficients:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0,
$$

where a, b, c are real numbers.

- Since the equation is linear, it enjoys a property called "linear superposition principle". This means that a linear combination of two particular solutions is itself a solution.
- The linear super-position principle allows us to write the general solution of our ODE as a linear combination of two basic solutions. The coefficients of this linear combinations are the constants of integration.
- As the simplest example of such an ODE consder $y^{\prime \prime}=0$.
- There are two basic solutions: $y_{0}=1$ and $y_{1}=x$.
- The general solution of $y^{\prime \prime}=0$ is therefore

$$
y=C_{0} y_{0}+C_{1} y_{1}=C_{0}+C_{1} x,
$$

where C_{0}, C_{1} are arbitrary constants.

The auxilliary equation

- We are discussing differential equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- Let's look for a solution of the form $y=e^{r x}$. For such a function,

$$
\begin{aligned}
& y^{\prime}=r y, \quad y^{\prime \prime}=r^{2} y \\
& a y^{\prime \prime}+b y^{\prime}+c y=y\left(a r^{2}+b r+c\right)
\end{aligned}
$$

- It follows that $y=e^{r x}$ is a solution if and only if r is a root of the quadratic equation

$$
a r^{2}+b r+c=0
$$

- We can solve this auxilliary equation using the quadratic formula:

$$
r_{1}, r_{2}=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

- This gives us the particular solutions $y_{1}=e^{r_{1} x}, y_{2}=e^{r_{2} x}$.
- The general solution can now be written as the linear combination

$$
y=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}
$$

where C_{1}, C_{2} are arbitrary constants.

Example 1.

- Solve $y^{\prime \prime}+y^{\prime}-6 y=0$
- The auxilliary equation is

$$
r^{2}+r-6=(r+3)(r-2)=0
$$

The roots are $r_{1}=-3, r_{2}=2$.

- Therefore, the basic solutions are

$$
y_{1}=e^{-3 x}, \quad y_{2}=e^{2 x} .
$$

- The general solution is

$$
y=C_{1} e^{-3 x}+C_{2} e^{2 x}
$$

where C_{1}, C_{2} are arbitrary constants.

The three classes

- Quadratic equations can be divided into one of 3 classes: distinct real roots, a double root (real), and conjugate complex roots.
- Each of these possibilities gives rise to a different class of ODEs, named case I,II, III in the text. Case I, where both roots of the auxilliary equation are real, was discussed above.
- Let us now discuss Case II, where the auxilliary equation has a repeated root. If the coefficients of the quadratic equation satisfy $b^{2}-4 a c=0$, then

$$
a r^{2}+b r+c=a\left(r+\frac{b}{2 a}\right)^{2} \Longrightarrow r=-\frac{b}{2 a} .
$$

- The corresponding particular solutions are $y_{1}=e^{r x}$ and $y_{2}=x e^{r x}$.
- Solution y_{1} is obvious. Let's verify that y_{2} is also a solution.

$$
\begin{aligned}
y_{2}^{\prime} & =(r x+1) e^{r x} \quad y_{2}^{\prime \prime}=\left(r^{2} x+2 r\right) e^{r x} \\
a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2} & =x e^{r x}\left(a r^{2}+b r+c\right)+e^{r x}(2 a r+b)=0
\end{aligned}
$$

- Therefore, the general solution of the Case II equation is

$$
y=\left(C_{1}+C_{2} x\right) e^{r x}
$$

where C_{1}, C_{2} are arbitrary constants.

Example 2

- The ODE $y^{\prime \prime}=0$, discussed earlier, belongs to this class.
- The auxilliary equation is simply $r^{2}=0$. The double root is $r=0$, so that

$$
y=\left(C_{1}+C_{2} x\right) e^{0 x}=C_{1}+C_{2} x
$$

matches the solution we obtained above.

- As a more complicated example, consider the ODE $4 y^{\prime \prime}+12 y^{\prime}+9 y=0$
- The auxilliary equation is

$$
4 r^{2}+12 r+9=4(r+3 / 2)^{2}=0
$$

- The general solution is therefore

$$
y=\left(C_{1}+C_{2} x\right) e^{-3 / 2 x}
$$

Complex roots

- Case III of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is the case where $b^{2}-4 a c<0$.
- This means that the roots of the indicial equation are complex:

$$
r_{1}, r_{2}=-\frac{b}{2 a} \pm i \sqrt{\frac{c}{a}-\frac{b^{2}}{4 a^{2}}}
$$

- Writing $r_{1}=s+$ it and $r_{2}=s-i t$ and applying Euler's formula,

$$
\begin{aligned}
& y_{1}=e^{r_{1} x}=e^{5 x}(\cos (t x)+I \sin (t x)) \\
& y_{2}=e^{r_{2} x}=e^{5 x}(\cos (t x)-I \sin (t x))
\end{aligned}
$$

- Thus, using the roots of the auxilliary equation directly gives complex-valued solutions. we can obtain real-valued basic solutions by taking the real and imaginary parts of these:

$$
\begin{aligned}
& y_{c}=\operatorname{Re} y_{1}=\operatorname{Re} y_{2}=\frac{1}{2}\left(y_{1}+y_{2}\right)=e^{s x} \cos (t x) \\
& y_{s}=\operatorname{Im} y_{1}=-\boldsymbol{\operatorname { I m }} y_{2}=\frac{1}{2 i}\left(y_{1}-y_{2}\right)=e^{s x} \sin (t x)
\end{aligned}
$$

- Since y_{c}, y_{s} are linear combinations of y_{1}, y_{2}, they are also solutions by the princ. of superposition. The general real solution of a case III equation is

$$
y=e^{5 x}\left(C_{1} \cos (t x)+C_{2} \sin (t x)\right)
$$

Example 3.

- Solve $y^{\prime \prime}-6 y^{\prime}+13 y=0$.
- The auxilliary equation $r^{2}-6 r+13=0$ has complex roots

$$
r_{1}, r_{2}=3 \pm \frac{1}{2} \sqrt{36-52}=3 \pm 2 i
$$

- The basic real solutions are $y_{c}=e^{3 x} \cos (2 x)$ and $y_{s}=e^{3 x} \sin (2 x)$.
- The general real solution is therefore

$$
y=e^{3 x}\left(C_{1} \cos (2 x)+C_{2} \sin (2 x)\right)
$$

Initial value problems (IVP)

- A general solution to a 2 nd order ODE has 2 constants of integrations. A particular solution corresponds to a particular value of these two constants based on two constraints. - One way to specialize to a particular solution is to impose initial conditions on y and y^{\prime} at a particular point. A linear 2nd-order IVP is a the ODE plus two additional constraints

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y\left(x_{0}\right)=y_{0} a n d y^{\prime}\left(x_{0}\right)=y_{1} .
$$

- After obtaining the general solution of the ODE we apply the constraints to obtain a linear system for the constants of integration. Solving this linear system we obtain a particular solution that satisfies the given initial conditions.

Example 4

- Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

- Earlier we obtained the general solution $y=C_{1} e^{-3 x}+C_{2} e^{2 x}$.
- Taking the derivative of the above gives $y^{\prime}=-3 C_{1} e^{-3 x}+2 C_{2} e^{2 x}$.
- Evaluating $y(0)$ and $y^{\prime}(0)$ and applying the initial conditions gives

$$
C_{1}+C_{2}=1, \quad-3 C-1+2 C_{2}=0 .
$$

- The solution of the initial condition system is $C_{1}=2 / 5, C_{2}=3 / 5$. Therefore, the solution of the IVP is

$$
y=\frac{2}{5} e^{-3 x}+\frac{3}{5} e^{2 x}
$$

- Remember: while a general ODE possesses infinitely many solutions (solution with parameters), the solution to an IVP is a fixed function without parameters

Boundary value problems (BVP)

- A 2nd order linear BVP is an ODE $a y^{\prime \prime}+b y^{\prime}+c y=0$ together with constraints of the form $y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$.
- Applying these contraints to a general solution gives a system of 2 linear equations in the constants of integration.
- Solving this linear system we obtain a particular solution that satisfies the given initial conditions.

Example 5

- Solve the BVP

$$
y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=1, \quad y(1)=3
$$

- The auxilliary equation is $r^{2}+2 r+1=(r+1)^{2}=0$.
- Since there is a double root, the general solution is

$$
y=\left(C_{0}+C_{1} x\right) e^{-x}
$$

- Applying the boundary constraints gives the system

$$
C_{0}=1, \quad\left(C_{0}+C_{1}\right) \mathrm{e}^{-1}=3 .
$$

- This linear system has the solution $C_{0}=1, C_{1}=3 \mathrm{e}-1$. Therefore, the solution of the BVP is

$$
y=(1+(3 e-1) x) e^{-x}
$$

