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Mechanical vibrations
I A vibrating mechanical system acted on by an external force obeys

the differential equation

mx ′′(t) + c x ′(t) + kx(t) = F (t),

where m is the mass of the object, k the spring constant, c > 0 the
damping constant and F (t) an external force expressed as a function
of time.

I Since force = mass × acceleration, we can read the above equation
as the acceleration produced by a superposition of forces:

x ′′ = − c

m
x ′ − k

m
x +

F

m
.

I The term proportional to the velocity x ′ is a damping force directed
so as to oppose the current velocity.

I The term proportional to the position x is the restoring force as per
Hooke’s law.

I The damping force and the restoring force are added to the external
force. The result is divided by the mass to describe the overall
acceleration.



Harmonic oscillator

I A simple, but fundamental subclass of vibrating systems is the case
of free vibrations, that is vibrations free from both damping and
external forces. The resulting system is called a harmonic oscillator
for reasons we will describe below.

I Let us take c = 0, F = 0 and seek the general solution of

mx ′′(t) + kx(t) = 0.

I The auxilliary equation is r2 + k/m = 0 with two imaginary roots
r = ±iω where ω =

√
k/m.

I Thus, the general solution is

x(t) = C1 cos(ωt) + C2 sin(ωt).



Phase-amplitude Form

I It is instructive to express the solution

x(t) = C1 cos(ωt) + C2 sin(ωt).

of the harmonic oscillator equation using phase-amplitude form

x(t) = A cos(ωt − δ) = A cos(ωt) cos δ + A sin(ωt) sin δ.

I Here

A =
√
C 2
1 + C 2

2 , δ = tan−1(C2/C1)

are called, respectively, the amplitude and the phase shift.

I We recognize the above expressesions from the unit on polar
coordinates. Indeed, (A, δ) are the polar coords of (C1,C2).

I In other words,

Aeiδ = A cos δ + iA sin δ = C1 + iC2.



Example 1.
I Consider a frictionless spring system with a mass of 2kg and a

natural length of 0.5 m. Suppose that a force of 25.6 Newtons
stretchs the spring to 0.7. Determine the frequency and amplitude
of the corresponding vibration.

I We calculate the value of the spring constant k by observing that

mk(0.7− 0.5) = 25.6

Solving the above equation gives k = 128.
I Our spring is released with an initial velocity of 0. Therfore, we must

consider the initial value problem (IVP)

2x ′′ + 128x = 0, x(0) = 0.2, x ′(0) = 0

where we have assumed that the origin x = 0 corresponds to the end
of the spring in its uncompressed form.

I The aux. equation r2 + 64 = 0 gives r = ±8i , ω = 8. The general
solution is x = C1 cos(8t) + C2 sin(8t). Applying the initial
conditions we obtain

x(0) = C1 = 0.2, x ′(0) = 8C2 = 0⇒ C2 = 0.

I The answer is already in phase-amplitdue form, with A = 0.2, δ = 0



Oscillatory forcing
I Consider an external force that is, itself, oscillatory

F (t) = F0 cos(ω0t),

with a single frequency ω0 and amplitude F0.
I If an external force acts on an undamped system, the energy content

of the system oscillates. The corresponding differential equation is

mx ′′ + kx = F0 cos(ω0t) (1)

I Using undetermined coefficiants, we seek a particular solution

xp = a cos(ω0t) mx ′′p + kxp = a(−mω2
0 + k) cos(ω0t)

I Letting k/m = ω2, we see that a must satisfiy

F0 = a(k −mω2
0) = am(ω2 − ω2

0) =⇒ a =
F0/m

ω2 − ω2
0

.

I If ω 6= ω0, the general solution of (1) is therefore,

x(t) = Aext cos(ω0t)+Aint cos(ωt+δ), where Aext =

(
F0/m

ω2 − ω2
0

)
.

and Aint, δ are constants determined by initial conditions.



Example 1

I Consider an undampled oscillator with m = 1, k = 9 subject to a
forced oscillation F0 = 80, ω0 = 5. Solve the corresponding IVP
with initial conditions x(0) = x ′(0) = 0.

I The corresponding differential equation is x ′′ + 9x = 80 cos 5t.

I Following the procedure in the previous slide we obtain

x(t) = Aint cos(ωt + δ) + Aext cos(ω0t),

where ω =

√
k

m
= 3, Aext =

80/1

32 − 52
= −5.

I Applying the initial conditions gives the equations
0 = Aint cos(δ)− 5,
0 = −Aint sin(δ).
The solution is δ = 0, Aint = 5.

I The solution of the IVP is a superposition
of oscillations at two frequencies:
x(t) = 5 cos 3t − 5 cos 5t



Resonance

I On the preceding slide we considered the equation for undamped
oscillation with periodic forcing: mx ′′ + kx = F0 cos(ω0t).

I Letting ω2 = k/m be the characteristic frequency of the system we may
rewrite the above as x ′′ + ω2x = (F0/m) cos(ω0t).

I Above we assumed that ω 6= ω0. If ω = ω0, we have a resonant system;
the external force continuously adds energy to the system.

I If ω0 = ω the solution form is

xp = at sin(ωt)

x ′
p = a sin(ωt) + atω cos(ωt)

x ′′
p = 2aω cos(ωt)− atω2 sin(ωt)

x ′′
p + ω2xp = 2aω cos(ωt) =⇒ a =

F0

2mω
.

I The amplitude of this solution grows without bound, and is therefore
unphysical. An actual physical system cannot contain an unbounded
amount of energy. In an actual resonance results in some kind of
catastrophe: a structure collapses, or a circuit burns out (positive
feedback between a microphone and a speaker).


