Robert Milson Assignment a8 due 04/12/2020 at 11:59pm ADT

1. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transce ndentals_Second_Edition/17_Fundamental_Theorems_of_Vector_Anal ysis/17.2_Stokes_Theorem/17.2.13.pg

Let *I* be the flux of $\mathbf{G} = \langle 5e^y, 7x^6e^{x^7}, 0 \rangle$ through the upper hemisphere *S* of the unit sphere.

- (a) Find a vector field A such that curl(A) = G.
- (b) Calculate the circulation of A around ∂S .
- (c) Compute *I*, the flux of **G** through S.

(c) I =_____

2. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transce ndentals_Second_Edition/17_Fundamental_Theorems_of_Vector_Anal ysis/17.2_Stokes_Theorem/17.2.7.pg

Verify Stokes' Theorem for the given vector field and surface, oriented with an upward-pointing normal:

 $\mathbf{F} = \langle e^{y-z}, 0, 0 \rangle$, the square with vertices (8,0,3), (8,8,3), (0,8,3), and (0,0,3).

 $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \underline{\qquad}$ $\iint_{\mathcal{S}} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \underline{\qquad}$

3. (**1 point**) Library/WHFreeman/Rogawski_Calculus_Early_Transce ndentals_Second_Edition/17_Fundamental_Theorems_of_Vector_Anal ysis/17.3_Divergence_Theorem/17.3.9.pg

Verify the Divergence Theorem for the vector field and region:

 $\mathbf{F} = \langle 6x, 8z, 5y \rangle \text{ and the region } x^2 + y^2 \le 1, 0 \le z \le 3$ $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \underline{\qquad}$ $\iint_{\mathcal{R}} \operatorname{div}(\mathbf{F}) dV = \underline{\qquad}$

4. (1 point) Library/WHFreeman/Rogawski_Calculus_Early_Transce ndentals_Second_Edition/17_Fundamental_Theorems_of_Vector_Anal ysis/17.3_Divergence_Theorem/17.3.13.pg

Use the Divergence Theorem to evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$. $\mathbf{F} = \langle x^{3}, 1, z^{3} \rangle$, *S* is the sphere $x^{2} + y^{2} + z^{2} = 16$.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

 $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} =$ _____

5. (1 point) Library/Rochester/setVectorCalculus3/ur_vc_13_7.p

^g Use Stokes' theorem to evaluate $\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = -14yz\mathbf{i} + 14xz\mathbf{j} + 1(x^2 + y^2)z\mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 1$, oriented upward.

6. (1 point) Library/./Dartmouth/setMTWCh7S2/problem_1.pg

Let $\mathbf{F} = (2x, 2y, 2x + 2z)$.

Use Stokes' theorem to evaluate the integral of **F** around the curve consisting of the straight lines joining the points (1,0,1), (0,1,0) and (0,0,1).

In particular, compute the unit normal vector and the curl of **F** as well as the value of the integral:

 $\label{eq:rescaled_$

7. (1 point) Library/Rochester/setVectorCalculus3/ur_vc_13_9.p
q

Use the divergence theorem to find the outward flux of the vector field $\mathbf{F}(x, y, z) = 3x^2\mathbf{i} + 4y^2\mathbf{j} + 5z^2\mathbf{k}$ across the boundary of the rectangular prism: $0 \le x \le 3, 0 \le y \le 3, 0 \le z \le 2$.

8. (1 point) Library/./Dartmouth/setMTWCh7S3/problem_1.pg

Evaluate $\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = (x^2 + y, z^2, e^y - z)$ and *W* is the solid rectangular box whose sides are bounded by the coordinate planes, and the planes x = 7, y = 6, z = 6.

Use Gauss's law to find the charge enclosed by the cube with vertices $(\pm 1, \pm 1, \pm 1)$ if the electric field is $\mathbf{E}(x, y, z) = 1x\mathbf{i} + 4y\mathbf{j} + 1z\mathbf{k}$.

_____£0

α

^{9. (1} point) Library/Rochester/setVectorCalculus3/ur_vc_13_5.p