$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=
$$

5. (1 point) Library/Rochester/setVectorCalculus3/ur_vc_13_7.p g Use Stokes' theorem to evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=-14 y z \mathbf{i}+14 x z \mathbf{j}+1\left(x^{2}+y^{2}\right) z \mathbf{k}$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=1$, oriented upward.
6. (1 point) Library/./Dartmouth/setMTWCh7S2/problem_1.pg

Let $\mathbf{F}=(2 x, 2 y, 2 x+2 z)$.
Use Stokes' theorem to evaluate the integral of \mathbf{F} around the curve consisting of the straight lines joining the points $(1,0,1)$, $(0,1,0)$ and $(0,0,1)$.

In particular, compute the unit normal vector and the curl of \mathbf{F} as well as the value of the integral:
$\mathbf{n}=$ \qquad) (the unit normal vector)
$\nabla \times \mathbf{F}=$ \qquad -)

The value of the integral is \qquad .
7. (1 point) Library/Rochester/setVectorCalculus3/ur_vc_13_9.p g
Use the divergence theorem to find the outward flux of the vector field $\mathbf{F}(x, y, z)=3 x^{2} \mathbf{i}+4 y^{2} \mathbf{j}+5 z^{2} \mathbf{k}$ across the boundary of the rectangular prism: $0 \leq x \leq 3,0 \leq y \leq 3,0 \leq z \leq 2$.

> 8. (1 point) Library/./Dartmouth/setMTWCh7S3/problem_1.pg

Evaluate $\iint_{\partial W} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\left(x^{2}+y, z^{2}, e^{y}-z\right)$ and W is the solid rectangular box whose sides are bounded by the coordinate planes, and the planes $x=7, y=6, z=6$.

9. (1 point) Library/Rochester/setVectorCalculus3/ur_vc_13_5.p

 gUse Gauss's law to find the charge enclosed by the cube with vertices $(\pm 1, \pm 1, \pm 1)$ if the electric field is $\mathbf{E}(x, y, z)=1 x \mathbf{i}+$ $4 y \mathbf{j}+1 z \mathbf{k}$.
\qquad

