## Zhi-Hong Sun

Primality tests for numbers of the form $k \cdot 2^{m} \pm 1$, Fibonacci Quart. 44 (2006), no. 2, 121-130.


#### Abstract

Let $k, m \in \mathbb{Z}, m \geq 2,0<k<2^{m}$ and $2 \bigvee k$. In the paper we give a general primality criterion for numbers of the form $k \cdot 2^{m} \pm 1$, which can be viewed as a generalization of the Lucas-Lehmer test for Mersenne primes. In particular, for $k=3,9$ we obtain explicit primality tests, which are simpler than current known results. We also give a new primality test for Fermat numbers and criteria for $9 \cdot 2^{4 n+3} \pm 1,3$. $2^{20 n+6} \pm 1$ or $3 \cdot 2^{36 n+6} \pm 1$ to be twin primes.


