Ronald Evans and Jonathan Pearlman Nonexistence of odd perfect numbers of a certain form, Fibonacci Quart. 45 (2007), no. 2, 122-127.

Abstract

Write $N=p^{\alpha} q_{1}^{2 \beta_{1}} \cdots q_{k}^{2 \beta_{k}}$, where p, q_{1}, \ldots, q_{k} are distinct odd primes and $p \equiv \alpha \equiv 1(\bmod 4)$. An odd perfect number, if it exists, must have this form. McDaniel proved in 1970 that N is not perfect if all β_{i} are congruent to $1(\bmod 3)$. Hagis and McDaniel proved in 1975 that N is not perfect if all β_{i} are congruent to $17(\bmod 35)$. We prove that N is not perfect if all β_{i} are congruent to $32(\bmod 65)$. We also show that N is not perfect if all β_{i} are congruent to $2(\bmod 5)$ and either $7 \mid N$ or $3 \mid N$. This is related to a result of Iannucci and Sorli, who proved in 2003 that N is not perfect if each β_{i} is congruent either to $2(\bmod 5)$ or $1(\bmod 3)$ and $3 \mid N$.

