Philip Matchett Wood

Bijective proofs for Fibonacci identities related to Zeckendorf's theorem,

Fibonacci Quart. 45 (2007), no. 2, 138–145.

Abstract

In Proofs that Really Count, Benjamin and Quinn wrote that there were no known bijective proofs for certain identities that give instances of Zeckendorf's Theorem, for example, $5f_n = f_{n+3} + f_{n-1} + f_{n-4}$, where $n \ge 4$ and where f_k is the k-th Fibonacci number (there are analogous identities for ℓf_n for every positive integer ℓ). In this paper, we provide bijective proofs for $5f_n = f_{n+3} + f_{n-1} + f_{n-4}$ and the seven other examples of such identities listed in Proofs that Really Count. We interpret f_k as the cardinality of the set \mathcal{F}_k consisting of all ordered lists of 1's and 2's whose sum is k. We then demonstrate bijections that prove the eight identities listed in Proofs that Really Count; for example, to prove $5f_n = f_{n+3} + f_{n-1} + f_{n-4}$, we give a bijection between $\{1, 2, 3, 4, 5\} \times \mathcal{F}_n$ and $\mathcal{F}_{n+3} \cup \mathcal{F}_{n-1} \cup \mathcal{F}_{n-4}$. A few possible directions for future research are also given.