Chris K. Caldwell and Takao Komatsu

Some Periodicities in the Continued Fraction Expansions of Fibonacci and Lucas Dirichlet Series,
Fibonacci Quart. 48 (2010), no. 1, 47-55.

Abstract

In this paper we consider the Fibonacci Zeta functions $\zeta_{F}(s)=$ $\sum_{n=1}^{\infty} F_{n}^{-s}$ and the Lucas Zeta functions $\zeta_{L}(s)=\sum_{n=0}^{\infty} L_{n}^{-s}$. The sequences $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$, which are derived from $\sum_{\nu=1}^{n} F_{\nu}^{-s}=$ A_{n} / B_{n}, satisfy certain recurrence formulas. We examine some properties of the periodicities of A_{n} and B_{n}. For example, let m and k be positive integers. If $n \geq m k$, then $B_{n} \equiv 0\left(\bmod F_{k}^{m}\right)$ (with a similar result holding for A_{n}). The power of 2 which divides B_{n} is $\left\lfloor\frac{n}{6}\right\rfloor+\sum_{i=0}^{\infty}\left\lfloor\frac{n}{3 \cdot 2^{i}}\right\rfloor$.

