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Abstract

We first use the Fundamental Theorem of Algebra to give an almost
immediate proof of the identity
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valid for all complex values of x and all non-negative integers n. The
identity was found by J. Vosmansky when x is a non-negative integer,
and proved, in this case, by L. Carlitz. We then generalize, and prove,
that for any integer r, and any complex x.
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In fact we prove more generally that
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valid for all complex x and y and any integer r and for any integer
n ≥ 0.
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