Lawrence Somer and Curtis Cooper Lucas $(a_1, a_2, \ldots, a_k = \pm 1)$ Pseudoprimes, Fibonacci Quart. **48** (2010), no. 2, 98–113.

Abstract

Cooper and Somer define a Lucas $(a_1, a_2, \ldots, a_k = \pm 1)$ sequence $\{G_n\}$ for all integers n as

$$G_n = x_1^n + x_2^n + \dots + x_k^n,$$

where x_1, x_2, \ldots, x_k are roots of the equation

$$x^{k} = a_{1}x^{k-1} + a_{2}x^{k-2} + \dots + a_{k}$$

with integer coefficients. Then they define Lucas $(a_1, a_2, \ldots, a_k = \pm 1)$ pseudoprimes to be composite n such that

$$G_n \equiv G_1 \pmod{n}$$
 and $G_{-n} \equiv G_{-1} \pmod{n}$.

Adams and Shanks and Szekeres had previously used negative indices in describing higher-order pseudoprimes. In this paper, we will relate pseudoprimes occurring in different Lucas $(a_1, a_2, \ldots, a_k = \pm 1)$ sequences. And we will provide substantial numerical tables giving Lucas $(a_1, a_2, \ldots, a_k = \pm 1)$ pseudoprimes for many different Lucas $(a_1, a_2, \ldots, a_k = \pm 1)$ sequences.