Lawrence Somer and Curtis Cooper
Lucas ($a_{1}, a_{2}, \ldots, a_{k}= \pm 1$) Pseudoprimes,
Fibonacci Quart. 48 (2010), no. 2, 98-113.

Abstract

Cooper and Somer define a Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}= \pm 1\right)$ sequence $\left\{G_{n}\right\}$ for all integers n as

$$
G_{n}=x_{1}^{n}+x_{2}^{n}+\cdots+x_{k}^{n},
$$

where $x_{1}, x_{2}, \ldots, x_{k}$ are roots of the equation

$$
x^{k}=a_{1} x^{k-1}+a_{2} x^{k-2}+\cdots+a_{k}
$$

with integer coefficients. Then they define Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}= \pm 1\right)$ pseudoprimes to be composite n such that

$$
G_{n} \equiv G_{1} \quad(\bmod n) \quad \text { and } \quad G_{-n} \equiv G_{-1} \quad(\bmod n)
$$

Adams and Shanks and Szekeres had previously used negative indices in describing higher-order pseudoprimes. In this paper, we will relate pseudoprimes occurring in different Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}= \pm 1\right)$ sequences. And we will provide substantial numerical tables giving Lucas ($a_{1}, a_{2}, \ldots, a_{k}= \pm 1$) pseudoprimes for many different Lucas $\left(a_{1}, a_{2}, \ldots, a_{k}= \pm 1\right)$ sequences.

