Diego Marques, James A. Sellers, and Pavel Trojovský
On Divisibility Properties of Certain Fibonomial Coefficients by a Prime, Fibonacci Quart. 51 (2013), no. 1, 78-83

Abstract

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence. For $1 \leq k \leq m$, the Fibonomial coefficient is defined as

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{F}=\frac{F_{m-k+1} \cdots F_{m-1} F_{m}}{F_{1} \cdots F_{k}},
$$

and $\left[\begin{array}{c}m \\ k\end{array}\right]_{F}=0$, for $k>m$. In this paper, we shall prove that if p is a prime number such that $p \equiv-2$ or $2(\bmod 5)$, then $p \left\lvert\,\left[\begin{array}{c}p^{a+1} \\ p^{a}\end{array}\right]_{F}\right.$ for all $a \geq 1$.

