Lawrence Somer and Michal Křížek
Easy Criteria to Determine if a Prime Divides Certain Second-Order Recurrences,
Fibonacci Quart. 51 (2013), no. 1, 3-12

Abstract

Let $\mathcal{F}(a, b)$ denote the set of all second-order recurrences $w(a, b)$ satisfying the recursion relation

$$
w_{n+2}=a w_{n+1}+b w_{n},
$$

where the discriminant $D=a^{2}+4 b$ and a, b, w_{0}, and w_{1} are all integers. Let $u(a, b)$ denote the recurrence with initial terms $u_{0}=0$ and $u_{1}=1$. We say that the prime p is a divisor of $w(a, b)$ if $p \mid w_{n}$ for some integer $n \geq 0$. Let $z(p)$ denote the least positive integer n such that $u_{n} \equiv 0$ $(\bmod p)$. Then $z(p) \mid p-(D / p)$, where (D / p) denotes the Legendre symbol. Define the index $i(p)$ as

$$
i(p)=\frac{p-(D / p)}{z(p)}
$$

When $i(p)=1$ or 2 , we will find easy criteria to determine exactly when p is a divisor of $w(a, b)$ based on the residue class or quadratic character of $w_{1}^{2}-a w_{1} w_{0}-b w_{0}^{2}$ modulo p. This generalizes results of Vandervelde when $a=b=1$.

