Kritkhajohn Onphaeng and Prapanpong Pongsriiam
Subsequences and Divisibility by Powers of the Fibonacci Numbers, Fibonacci Quart. 52 (2014), no. 2, 163-171.

Abstract

Let F_{n} be the nth Fibonacci number. Let m, n be positive integers. Define a sequence $(G(k, n, m))_{k \geq 1}$ by $G(1, n, m)=F_{n}^{m}$, and $G(k+$ $1, n, m)=F_{n G(k, n, m)}$ for all $k \geq 1$. We show that $F_{n}^{k+m-1} \mid G(k, n, m)$ for all $k, m, n \in \mathbb{N}$. Then we calculate $\frac{G(k, n, m)}{F_{n}^{k+m-1}}\left(\bmod F_{n}\right)$.

