REMARKS ON THE DIOPHANTANIAN EQUATIONS a? + ab + b® = ¢?
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The present note is concerned with properties of ordered triples (a,b,c) of nonnegative
integers which satisfy one of the two equations given in the title. Such solutions of

(1) a® +ab + b? = ¢&°
will be referred to as obtuse Pythagorian triples; the corresponding solutions of
(2) ‘ a? - ab + b? = ¢?

will be called acute Pythagorian triples. If a, b, and ¢ are relatively prime, the triples
will be termed "primitive."

These two Diophantanian equations arise in a variety of ways; as it will be shown, even
the Fibonacci numbers can generate and be generated by solutions thereof. The following prob-
lems will further exemplify this diversity. The reader is encouraged to pursue them at least
to the point of recognizing their relevance:

1. Find three Pythagorian triangles of the same area. This problem was resolved by Euler
in about 1781 [3].

2. Find solutions for the Diophantanian equation z? + y2 + 22 =242, 1In doing so, A. Ger-
ardin [4] resolved several other equations as well.

3. Find three squares as consecutive terms of an arithmetic progression with common differ-
ence k. This problem along with its ramifications was discussed by R. L. Goodstein [5].

4. Remove a square of side x from each corner of a rectangular cardboard so that the remain-
ing portion can be folded into an open box of maximum volume. What dimensions for the
rectangle yield integral x? The first part is an old calculus problem probably dating
back to Lamb [8] or earlier.

5. Find fourth-degree polynomials with integral coefficients whose extrema and inflection
points have integral coordinates and are easily found (i.e., the constant term of the
first derivative is zero).

6. Find integral triangles (triangles, all of whose sides are of integral length) with a
60° or 120° angle. According to Dickson [3], this problem was first considered by A.
Girard, whose solutions were rediscovered dozens of times over the past three hundred
years.

In fact, except for rediscoveries of various formulas generating their solutions, the
Diophantanian equations under consideration are almost totally neglected in the mathematical
literature. We hope to fill this gap at least partially. As a basis for the results to fol-
low, we restate here without proof a procedure that was originally given by Zuge [13] in a
slightly different format:

Representation Theorem: Let m and n be relatively prime positive integers of different
parity and assume that 3Im. Let (a,b,e) = (4mm,2mm + ]mz - 3n2|,m2 + 3n2%). Then all primi-
tive acute Pythagorian triples are either of the form (a,b,c) or of the form (|a - bl,

max {a,b},c) and all primitive obtuse Pythagorian triples are of the form (|a - b|,

min {a,b},c).

During the course of this work, using this representation theorem, a computer program
was prepared by Russell Still, an undergraduate student, generating all primitive acute and
obtuse Pythagorian triples for which m,n < 50. The author's gratitude is hereby expressed to
Mr. Still for his valuable assistance. Copies of the printout are available from the author
upon request.

The three types of triples given by the representation theorem may also be related by
observing that if (a,b,c¢) is a solution of equation (1), then both (a,a + b,e) and
(a + b,b,c) will satisfy equation (2). Consequently, in light of the geometrical interpre-
tation afforded by Problem 6, they may be obtained from one another by the addition and/or
subtraction of equilateral triangles. We shall further utilize this geometrical interpreta-
tion in regarding the triples as triangles and, in particular, in referring to ¢ as the
hypotenuse and to a and b as the legs of (a,b,c).

We first observe that since m and »n are relatively prime, of different parity and 3Im,
the pair (m,n) must be congruent modulo 6 to one of the following pairs of numbers: (1,0),
(1,2), 1,4, (2,1, (2,3), (2,5, (4,1), (4,3), (4,5, (5,0), (5,2), (5,4). Simple
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calculations show that in each case m? + 3n% = 1 (mod 6), that is, the hypotenuse of primi-
tive obtuse and acute Pythagorian triples is always of the form 6k + 1. This proves a
conjecture by McArdle [9].

In fact, not only ¢, but every divisor of it must be of the same form. To prove this,
let p be a prime divisor of ¢ = m* + 3n®, Observe first that p # 2 since m and n are of
different parity, p # 3 since 3Jm, and pJm and pfn due to the relative primeness of m and n.
Consequently, by raising both members of the congruence m? = -3n® (mod p) to the (p-1)/2th
power and upon applying Fermat's theorem, one finds that (-3)?-1/2 = 1 (mod p).

Assume that p = 6k + 5. If k is even, say k = 2s, then 3%°%? = 1 (mod 125 + 5) follows.
If k is odd, say k = 2s - 1, one similarly obtains 3%°°”! = -1 (mod 12s - 1). Since both of
these conclusions are contrary to known facts (see, for example, Theorem 20 on page 32 of
[10]), the assumption that p = 6k + 5 is indeed untenable.

Conversely, if ¢ = 6k + 1 is a prime, then it has a unique representation of the form
m® + 3n® (see, for example, Theorem 5 on page 323 of [12]). Such m and » must clearly
satisfy the restrictions stated in the Representation Theorem, hence each prime must appear
as the hypotenuse of exactly one (two) primitive obtuse (acute) Pythagorian triple(s).

This last fact may be connected to a slight extension of Girard's results mentioned
earlier, to conclude that each prime number of the form 6k + 1 is uniquely expressible in
both of the forms x’ # xy + yz, where x and y are positive integers. For example, one’
finds that the representations

7=1%241+2+2%=1%2-1+3+ 32,
13=1241+3+43%2=12-1+4+ 42, and
19 = 22 + 23 + 32 =22 - 2.5 + 52,

are unique.
If ¢ has r distinct prime divisors, each of the form 6k + 1, then repeated application
of the well-known formula

(3) (m3 + 3n3)(m3 + 3n3) = (mm, * 3nn,)? + 3(mn, * myn,)?

will yield exactly 27" ! (2") primitive obtuse (acute) triples with hypotenuse c¢. Correspond-
ingly, ¢ will also have 2"~! representations of each of the forms x? * xy + y?. Equation (3)
may also be regarded as a method of obtaining new triples out of old ones. Another such
method is afforded by the matrix

-3 7 1
M=115 5 17 |;
8 2 20

if (a,b,e) is an obtuse Pythagorian triple, then so is (a,b,c)M—viewed as a product of
matrices.

Obtuse and acute Pythagorian triples may also be generated from Pythagorian triples by
matrices. If we define

2 =2 -1 2 1 0 -1 1 0
N=|1 1 0}, kK= 0 2 -1}, L-= 2 2 -1,
-1 1 2 0 -1 2 -1 -1 2

then (a,b,e)N is an obtuse and (a,b,c)X and (a,b,c)l are acute Pythagorian triples whenever
a? + b%? = ¢2, Since N, K, and L are nonsingular, their inverses can also be utilized in
transforming our results into the pythagorian setting.

The well-known [11] mechanical generation of sequences of Pythagorian triples from
(21,220,221) and (41,840,841) by a systematic insertion of zeros may also be paralleled;
each of the six sequences of triples given below are obtuse Pythagorian:

(120, 23 , 133 ), (129 , 391 , 469 ),
(10200 , 203 , 10303 ), (1209 , 39991 , 40609 ),
(1002000, 2003, 1003003), ...; (12009, 3999991, 4006009), ...;
(81 , 1599 , 1661 ), (41 , 399 421 ),
(801 , 159999 , 160401 ), (401 , 39999 , 40201 ),

(8001, 155999999, 16004001), ...; (4001, 3999999, 4002001), ...;
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21 , 99 » 111 ), (80 , 19 , 91 ),
(201 , 9999 , 10101 ), (9800 , 199 , 9901 ),
(2001, 999999, 1001001), ...; (998000, 1999, 999001), ... .

Other interesting sequences of obtuse and acute Pythagorian triples were discussed in
two earlier notes by the author [1l, 2] in a more geometric setting. Still other modes of
generating infinite sequences (ak,bk,ck) of primitive obtuse Pythagorian triples with special
properties are depicted in the tables below.

On the basis of Table 1, one may prove, for example, that there are infinitely many
obtuse Pythagorian triples whose legs differ by unity. The proof of this fact has been
posed by the author as a problem in The Fibonacei Quarterly in a slightly different
setting. The corresponding problem concerning the existence of acute Pythagorean tri-
ples (a,b,c) with a = b = 1 has a totally different solution: there are no such triples.

The proof of this fact is also left to the reader.

k m n a b e

1 1 2 8 7 13

2 13 2 104 105 181

3 13 28 1456 1455 2521

4 181 28 20272 20273 35113

5 181 390 282360 282359 489061

6 2521 390 3932760 3932761 6811741

7 2521 5432 54776288 54776287 94875313

8 35113 5432 762935264 762935265 1321442641

TABLE 1

In Table 2, a, - by = 2 for each k. Again, an infinite number of such triples can be
recursively generated from the ones displayed. It may also be noticed that each my _; (ny)
of Table 2 is twice as large as the corresponding m,, _; (n,) of Table 1, thus the two
tables could be obtained from one another. The proof of the fact that in each case my = ¢,

reveals some analogy to the well-known Fibonacci identity F, ., = Fﬁ + F:+1'

k m n a b c

1 2 1 5 3 7
2 7 4 57 55 97
3 26 15 781 779 1351
4 97 56 10865 10863 18817
5 362 209 368517 368515 908287

TABLE 2

Continuing with the obtuse case, one may further observe that for each k = 2, 3, 4, ...,
there exists a primitive obtuse Pythagorian triple (a,b,c) for which ¢ - b = k; in fact, one
such triple is given by

(2k - 1, 3k?* - 4k + 1, 3k?* - 3k + 1).
If, in addition, kX is not a multiple of 3, then

(2k - 3, k* - 4k + 3, k* - 3k + 3)
is another such triple.

These triples may also serve as the basis for yet another observation: each odd number
appears at least once as the shorter leg of a primitive obtuse Pythagorian triple. The two
formulas above exhaust all such triples for powers of odd primes; with an increase in the
number of divisors, one can observe a corresponding increase in the number of such triples.

One can also identify those primitive obtuse Pythagorian triples both of whose legs are
odd. They are of the form

2mn + m? - 3%, 2mm - m® + 3n®, m® + 3n?),

m . . . .
where 3 <n <m and, as usual, n and m are relatively prime, of different parity, and 3Im.
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Conversely, if n < 3 or m < n, then the primitive obtuse Pythagorian triples obtained

via the Representation Theorem have an even leg. In fact, such a leg must be a multiple of 8
as it is readily shown via equation (1). For, suppose that a is even, say a = 2x. Then b
and ¢ must both be odd, say b = 2y + 1 and ¢ = 2z + 1, and hence, from equation (1) we obtain
that 2[x? + y(y + 1) - 2(z + 1)] = x(2y + 1). This implies that x must be even. But then
the left member of this equality is a multiple of 4, since y(y + 1) and 2(z + 1) are clearly
even. Therefore x is a multiple of 4 and, hence, a is a multiple of 8.

Incidentally, these observations provided a solution to a problem posed in the
American Mathematical Monthly [7].

Furthermore, each multiple of 8 appears as the leg of a primitive obtuse Pythagorian
triple. One such triple is given by the formula

(8k, 12k - 4k - 1, 12k + 1)

where k = 1, 2, 3, ... . Again, not all such triples are given by this formula; for example,
with the help of the printout one may verify that there are six different triples with a leg
of 280. '

If the triples are not required to be primitive, one may further observe that each of
the following formulas yields obtuse Pythagorian triples for each k =1, 2, 3, ...:

(8k + 2, 24k* + 8k, 24k% + 12k + 2),
(8k + &4, 12k* + 8k, 12k? + 12k + 4),
(8k + 6, 24k? + 32k + 10, 24k + 36k + 14).

Since (6,10,14) is also such a triple, we may conclude that each positive integer except 1,
2, 4, and 8 can appear as the shorter leg of an obtuse Pythagorian triple (see [7]).

Concerning divisibility properties, we have the following two facts, which may be
established by a case-by-case examination of all possible congruences:

(i) If (a,b,c) is an obtuse Pythagorial triple, then of the four numbers, a, b, a + b, and e,
one is divisible by 3, one by 5, one by 7, and one by 8. Since (3,5,7) is one such tri-
ple, this result is the best possible.

(ii) If (a,b,e) is a primitive acute Pythagorian triple, and if a + b is even, one has
a+ b = £2 (mod 12), while if @ + b is odd, the congruences a + b = #1 (mod 12) result.
In conclusion, paralleling results of Horadam [6], we associate the generalized Fibo-
nacci sequences with the triples under consideration as follows. Let k be an arbitrary posi-
tive integer and assume that m and n satisfy the requirements set forth in the Representation
Theorem. Define H  and H, by .

.Ho = (_l)k+1(ka - Fk+ln)’ Hl = (—1)k(Fk—lm - Fkn)s
and for © > 2 let H, = H;_, + H;_,. Then it is easily shown that
H,=n and H, , =m,

and thus #, and X, ,, generate primitive obtuse and acute Pythagorian triples in the sense of
the Representation Theorem. For example, the Fibonacci numbers may be associated with the
triple (8,5,7) in the following manner:

_ 2 2 2 2
(8,5,7) = (4F,F,, 2F,F, + F> - 3F2, F2 + 3F2).

REFERENCES

1. G. Berzsenyi. 'Geometric Representation of the Sequence <3, 7, 13, 21, 31, 43, 57, ...>,"
J. Recreational Math. 7 (1974):203-205.

2. G. Berzsenyi. "Integrally Inscribed Regular Triangles and Hexagons.'
Math. 8 (1975):12-15.

3. L. Dickson. History of the Theory of Numbers, Vol. II (see, in particular, pp. 173,
214-215, 405-406, and 434). New York: Chelsea Publishing Company, 1952.

4. A. Gerardin. 'Trente sixieve Problems." Sphinx-Oedipe 6 (1911):22.

5. R. L. Goodstein. '"Rational Triangles.'" The Mathematical Gazette 23 (1939):264-267.

6. A. F. Horadam. '"Fibonacci Number Triples.'" Amer. Math. Monthly 68 (1961):751-753.

7. E. Kramer. Problem E2566. Amer. Math. Monthly 82 (1975):1010.

8

9

0

' J. Recreational:

. Sir H. Lamb. An Elementary Course of Infinitesimal Calculus. Cambridge, 1919.

E. McArdle. "The 'Cosine Rule.'" J. Recreational Math. 3, No. 1 (1970):122-123.

D. Shanks. Solved and Unsolved Problems in Number Theory. Vol. I. Washington, D.C.:
Spartan Books, 1962.

11. W. Sierpinski. Pythagorian Triangles. New York: Yeshiva University, 1962.

12. W. Sierpinski. Elementary Theory of Numbers. Warsaw: Polish Academy of Science, 1964.
13. Zuge. "Allegemein-pythagoreische Zahlen." Archiv der Mathematik und Physik Series 2,

17 (1900):254-262.



