GENERALIZATION OF A PROBLEM OF GOULD AND ITS SOLUTION
BY A CONTOUR INTEGRAL
PAUL S. BRUCKMAN
Concord, California
The following research problem was posed by H. W. Gould in [1].
Prnoblem 1: 1If, for an arbitrary sequence {An}:-O’

Fx) =iA,,x", h(x) =ZW:A,3x",
n=0

n=0

how are functions f and h related?
The preceding problem is readily generalized as follows.

Problem 2: 1f, for arbitrary sequences {A"}:_O and {Bn}:_o,

f(x) = iA,,x", g(x) = ian", and h(x) = i:Aanx",
n=0 n=0

n=0

how is function 4 related to functions f and g7

Problem 2 was at least partially solved in a previous paper (viz. [2]), using the
techniques of the umbral calculus. However, the "solution" obtained in [2] is expressed
as a function of finite difference operators, thereby necessitating caution in its applica-
tion. The aim of this paper is to obtain a rigorous solution to Problem 2 above, under the
assumption that f and g are "sufficiently" analytic. We will find it slightly more tedious,
but more far-reaching, to solve the even more general

Probfem 3: 1f, for arbitrary sequences {An}:__m and {Bn}zg_m, and z, € C,

f(a) = z 4,(z - 3))", g(z) = Z B,(z - 2))", h(z) = Z A,B,(z = 20",

how is function % related to functioms f and g?
Before proceeding to the main theorem of this paper, which solves Problem 3, we will
find it convenient to make a few preliminary definitions and remarks.

Deginitions: Let z be an arbitrary point in the complex plane (i.e., the z-plane), and
suppose the following Laurent series expansions valid in the annuli indicated:

1 F&) =D A,(z - 2)", Vz3r <|z-2z <Ry,
2) g(z) = Y. B,(z - 2))", V231, < |2 -2, <Ry,

P, < Py min (HI,RZ).

where max (,,r,) =
0, p, = ». Let

We permit p,

(3) D, ={z : ry < |z -2, <R},
(4) D, = {z : r, < |2 - 2| <R},
(5) D, = {z : pi < |z - 34| < pi},
(6) D, = {z : ryr, < |z - 24| < R1R,}.

Also, define the Laurent series

(7 h(z) = ) A,B,(z - 2,)",

N & =0

which is necessarily valid Vz € D,. Given 2z € D;, consider another complex plane (say, the
w-plane), and define the annulus

(8) A(z)
9 s,(2)

{w: s,(2) < |w- 2] <8,(2)}, where

max (p,,]z - 2,]/p,), s,(2) = min (P,,|2 - 2,[/P)).

]
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Let T be any simple closed contour contained in A(2) (in the w-plane), traversed in the posi-
tive direction, and containing the point w = z; in its interior.

Remarks: Note that D, N D, ¥ @, and D, C D, (since r,r, < p3 < p3 < R,R,). Also, if z € D,,
then p, < s,(2) and |z - z4|/p, < 5,(2), so that &,(z) < s,(2), which implies that A(z) # @
for all z € Dj.

Theorem: Given (1)-(9), then for all z € D,

z -3z z -3z
Fw)gqzo + ——— fezo + ——5pg W)
. 1 w - zO dw 1 w - ZO d‘;
10 hz) = 5w w - z, T 24w w - 2,
r r
Proof: Because of the symmetry between functions f and g, it suffices to prove only the
first relation in (10). Let
z - 3,
= 4+ — ).
Gw) = g9z, ra—
Then, by (2), the Laurent series for G, namely
- z - z,\"
0
(11) Gw) —n;., B,(m—) 8
represents an analytic function in the annulus A, (2) given by:
(12) b (2) = {w : |z - 24|/R, < |w - 34| < |z - z,|/r,}.

Also, the Laurent series for f(w), given in (1), but replacing z by w, represents an analytic
function in the annulus A, (3) of the w-plane, given by:

(13) A = w i r) < |w- 2z <R}

For all z € Dy, r;r, < p} < |z - 2,| < p5 < R\R,; hence, |z - z,|/R, < R, and
|z - z4|/r, > r,. Also, », <R, and |z - z,|/R, < |z - z,|/r, (since r, < R,). It follows

that max (r,,|z - z,|/R,) < min (R ,|z - z,|/r,). This, in turn, implies that

Ay (2) N B, (2) # 8.

Next, observe that, for all z € D,, s,(3) = max (91’l3 - zo|/pz) max {max (r,,r,),

max (|z - 2y|/Ry, |2 = 2y|/R))} = max (r,,r,,|z - 2,|/R,,|2 - z4|/R,) > max (r;,|z - 34|/R,).
Also, s,(2) = min (pz,]z - zol/pl) = min {min (R ,R,),min (|]z - zol/rl,lz - zol/rz)} =

min (R,,R,,|z - zy|/r,,|z - 2,|/r,) <min (R,,|z - 2,|/r,). This implies that, for all

v

z e Dy,
A(z) C {8,(2) N4, (2)}.

Since I' C A(2) and z lies in the interior of I', thus the function f(w)/(w - z,) is con-
tinuous on I' C A, (2); moreover, G is analytic on A(z) C A,(3). By a well-known theorem of
complex analysis, it is therefore legitimate to interchange the integral and summation signs
in the following expression.

1 (w) n 1 (w)dw
R L k) P R s

1
n=—e - z2)""

But, since T' C A(2) C A, (2), we may apply the formula for the coefficients of a Laurent
series, namely:

Ay = mff(w)/(w - 2y)" .

Hence, the right member of (14) is the restriction of h(2) to Da’ a subset of D, The left
member of (14), by (11), is equal to the first integral expression in (10). Thls establishes
the first equation of (10), and therefore the theorem.
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Additional Remarks: Although the result of the theorem has been proven valid for all z ¢ D,
as given in (5), the series defining h(3) represents an analytic function in the larger domain
D,, as given in (6). Hence, the series in (7) is the analytic continuation of the integral
expression for % in (10), from D; to D,. If the latter expression yields a "closed" formula
for h(z), then this must be the closed form "sum-function" of % as given by (7), and holds for
all z € D,.

The argument proving the preceding theorem may be slightly modified, and is somewhat
simplified, if r, = r, = 0, thereby leading to a corresponding result involving Taylor,
instead of Laurent series.

Sonoﬂﬂa&g: Suppose f and g are as given in (1) and (2), with 4_, =B_, =0 (n =1, 2, ...),
.e., .

(15) (=) =2A,,(z -3)", ze D, ={z: |z - zol <R},
(16) g(z) = 2: B,(z - 2))", zeD,=1{z: |z-2z,| <R,}.
n=0
Then, for all z € Dy = {z : |z - 3,| < p2} (where p, has been previously defined):

a7 k() = ZA,,E (z - 2)"

y b
e w - 3, 2%m w - 3,

Z—Zo z-zo
1 f(ltJ)g 2 +;—:70- L flz, + 5——-—;; a(w)
L dm=—f: Y
T r

where ' is as described in the theorem, except that s,(2) = Iz - z°|/02, s,(2) = p,.
We illustrate the theorem and its corollary w1th several examples, the first few of
which are trivial (but serve to corroborate the results), the last few a bit more interesting.

Exampfe 1: Llet 2, =0, B, =1 (n=0,1,2, ...), A.y =Bp=0 (n =1, 2, ...). Then
g(z) = (1 - z)"! for all z ¢ D,, the open unit disk. For all z € D,, where

s = {2 : |z| < pz}, let A(2) = {w : !zl/p2 < ]w[ < pz}. We see that h(z) = f(2), trivially,
and expect that the corollary yields this result. Naively applying the corollary, we then

obtain, Vz € Dyt

h(z) =

27T w - 3

-1 N 1 4
ff(w)g( w) 4o = £.&)§2 = f(w) = f(z),

W=z

as expected. By the "additional remark" preceding, the foregoing result is still true for
all z € D, =D, = {z : |z| <R,}.

Example 2: Let z, =0, 4, =a", By =b" (n=0,1,2, ...), A, =B.,=0 (mn=1,2, ...),
Then

where ¢ # 0, b # 0; without loss of generality, we may assume |a| <
D, lz] < 1/|al}, D, = {z : |z| < 1/[b|}, Dy = {z : |z| < [p]7%],

D, |z| < 1/|ab|}, and A(z) = {w : |bz| < |w| < 1/|b|}. It is clear that

f(z) = (1 - az)™?, g(z) = (1 - bz)"!, and h(z) = (1 - abz)~}, for all z € D,, D,, and D,,

respectively; nevertheless, it will be instructive to derive this from the corollary.
Applying the first formula in (17), we have:

_ 1 v
hiz) = 2m]€(1 ~ @) @ - 52)°

Hence, since the points w = bz and w = 1/g are interior and exterior to I', respectively, we

Vz e D,.

find upon applying the Cauchy integral theorem, that h(z) = (1 - aw)'liw be = (1 -~ abz) 7},

¥ 2 € D,. Again using the remark on analytic continuation, we obtain the anticipated result,
namely h(z) = (1 - abz)"'vz e D,.

Example 3: Let f(z) = f(z,t) = exp {3t(z - 271)} = :E: J, (t)2", the generating function of

n=-x

the Bessel functions of integral order. Similarly, let g(z) = f(z,u). It is known that both
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series converge and represent analytic functions of z in the domain D, = D, = D, = D, =
{z : 0< |z[ < o}, i,e., for all finite z except z = 0. In the nomenclature of the theorem's

conditions, 2, = 0, r, =r, =0, R, = F, = ®; hence, &(3) = {w : 0 < |w| < «}. Thus, taking

T as in the theorem, by the formula for the coefficients of a Laurent series:

i -1
(19) J, (£) =-1—fexP{’t(w m— )}:Zw, n=0, %1, #2, ...,
T

2zm Wt

with a similar formula for ¢, (x), valid for a1l complex ¢ (or u). Applying the theorem, we
then have, for all z e D, = D,,

h(z) = D J, (£)d, (“)‘3”=2_~%7? fexp {3t @ - w )} exp (Ju(z/v - w/2)} - Ci" ,
T

n=-o

or

(20) h(z)

— 1 - ) L(yz - B)w t} [t}
i rexp{z(f u/z)w} exp {+(uz - tdw™ '} o

We now make the substitution
1 21
w = agbf, where ¢ = (¢ - uz)2(t - u/z)"2,

and restrict z further so that z # ¢z/u, 2 # u/t, which implies @ € D,. Since, in the
w-plane and £-plane, g is a constant, the above substitution transforms ' into a topologi-
cally equivalent simple closed contour I'’ in the Z-plane, which is still oriented in the
positive direction. Therefore,

(21) h(z) = ﬁfr exp {35 (E - £°1)} » “g where b = (¢ - uz)¥(t - u/z)?%.

Comparing this last expression with (19), we see that
(22) h(z) = J,(b).
Thus, we have proved the interesting identity

(23) S 0, (8)d, Goa" = Jol(t - us)i(t - u/z)?), vz # 0.

n =-wx
Note that (23) is valid also for the previously excluded values z = t/w and 2 = u/t, pro-
vided ¢ # 0, u # 0 (by analytic continuation). Therefore, we obtain the following formulas,
as special cases of (23):

(24) D J(£), G (E/)7 = 1,
Nn=-x
(25) > g, (), () = T (= w), VE,uf 0.

The identity given in (23) is not in itself new, appearing (in variant form), e.g., in [3].

Exampfe 4: Let f, (3) be the generating function for the mth powers of the Fibonacci numbers
(m=1, 2, ...), i.e.,

o«

(26) £,(2) =) Flz", valid for all z € D, = {z : |z

n=0
[in this example, a = 3(1 + V3), R = 4(1 - V5), F, = (a” - 8™)//5]. We let
fz) = fi(z) =2(1 -2-2%)""=5%{(1-az)"! - (1-8)""'}, and ¢ = f, in the corollary,
with B, =o', R, = a™" = p,5 then 'y = {z : |z] <a™®}, D, = {z : |z| <a™"™"%}, and

(z).

Choosing T in A(z), we note that it contains the points w = 6z and w = Bz in its interior,

1
1

< a ™}

Az) = {w : |zla™ < |w| <a"}vz e D,. We see readily, from (7), that h(z) = f,,,

since |Bz| = a™'|z| < a|z| < a”|z] < |w|Vw e I'. Applying the corollary, we thus have, for
m=1, 2,
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Fpar (@ = Z—L;frfm W7, Gy + 2L S, @1 - a9 - @ - 87,

which reduces to the elegant recursion
(27) Foey (&) = 1V/3{F, (az) - £, (B2)},

which is actually valid for all z e D,, m= 0, 1, 2, ...

Of course, (27) may readily be derived using more elementary techniques, but the item
of interest here is the method by which it was derived. Without too much difficulty, induc-
tion may be used on (27) to derive the partial fraction decomposition of f, (2), which is
given by:

28) £ @) = 5‘%m;§<-l)"(’,’j)<1 - o kgka) ",

This is a variant of a result in [4].

Exampfe 5: Recall the generating function of the Legendre polynomials,

(29) F(a) = f(z,8) = (1 - 2tz + %)™ = ) P, (t)z".

n=0

The radius of convergence of this series depends on ¢ and complicates the subsequent compu-

tations. Therefore, we will assume that the indicated operations, throughout this example,

are legitimate and we will not attempt to justify them. It may be shown that, for appropri-
ately chosen t and z, full rigor may be obtained. Let

(30) g(z) = e® =Z z—’: .
n=0 '

Then, for an appropriately chosen contour I', the corollary implies that

(31) R(z) = DB, ()2 = E—%f e’dy :
T

- .2 2v%
n=0 w*® - 2tzw + 2°)

In order to evaluate the last integral, we make the substitution w = tz + $2(1 - tz)%(g - £ H.

For suitably chosen ¢, 2, and I', this mapping transforms I into another simple closed contour
T'' with sufficiently desirable properties. Proceeding formally, we obtain, after some simpli-
fication,

S tz 1 2y% -1d_€
(32) h(z) = i r'e exp {32(1 - t*)2(E - £79)} T -
The quantity e®? may be factored out of the integrand and the remaining expression, compared
(again) with (19), yields the following identity:

= n
(33) Zopnw)i—! = et* g, (2/1 - t2).

nw=
The last identity is actually valid for all finite 2, since the right-hand member of (33) is
clearly an entire function. The identity in (33) is indicated in [5], along with the comment
that it is of unknown origin.

The foregoing examples adequately illustrate the applicability of the theorem and its
corollary, to obtain a closed form expression for h(2). This may be immediately obvious, or
may require an appropriate transformation and/or recognition of known relations, as the pre-
vious examples illustrate. If this is possible (and this may not always be the case), a
certain degree of ingenuity is required to hit upon the proper transformation. With suffi-
cient imagination and industry, the interested reader will discover other relations of the
types illustrated above. The aim of this paper was to obtain a solution of Gould's problem,
in closed form or otherwise, and this has been accomplished by the theorem and its corollary.
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A MISCELLANY OF 1979 curiosa

CHARLES W. TRIGG
San Diego, California

The digital root of 1979 is 8, which also is the sum of the two absent odd digits, 3
and 5. Otherwise, F, + Fg = F¢.

1+9+«7+9=7567, three consecutive digits in ascending order.

19.79

40353607, which contains five consecutive digits.

1979 is a cyclic compression of two palindromes—the composite 979 (= 11 « 89)
and the prime 919.

1979,, = 118EF,, = 153X,, = 2638, = 3673, = 5525, = 13055,
= 3044, = 132323, = 2201022, = 11110111011,.

In base four, the integer is almost smoothly undulating. In base three, the palindromic
integer contains the three distinct digits in that base. In base two, the groups of 1's
form a decreasing sequence.

1979 = (11)(11)(11) + [(111 - 1)/(1 + 1) - 1](11 + 1)
2222 - 222 - 22 + 2/2

(333 - 3)(3!) - 3/3
L(4hh + 4b + 4 + 4)

]

4/4

-4 -
5¢5¢5¢«545¢«5+«5+5+4+555+4+5+5+5+55-5-75/5
6«6 °6-6+666+6+6+6-26/6

7«77 «7-7¢«7+7=71-17/7-17/7

888 + 888 + 88 + 88 + 8 + 8 + 8 + 8/8 + 8/8 + 8/8

wownononwonon o

(9999 - 999)/9 + 999 - 9 - 9 - 9/9 - 9/9

1+9+7+9 =26

19 + 97 + 79 + 91 = 286

197 + 979 + 791 + 919 = 2886

1979 + 9791 + 7919 + 9197 = 28886

Here are several of the ways that 1979 can be written using conventional mathematical
symbols and one 1, nine 9's, seven 7's, and nine 9's.

1979 = 1(999 + 9997/9997) + 9(99 + 779/779) + 7(9 + 9/9) + 9

1(999 + 9/9) + 9(99 + 9/9) + 7(9 + 9/9) + 9(99777/99777)

19(99 + 99999/99999) + 7(/9Y/9 + 7779/7779) + 9

197(9 + 777/777) + v¥9Y/9(9999999/9999999)

1(999 + 9/9) + v9/9(99 + 7/7) + 7(77/77 + 9) + 9 + 9(999 - 999)

In the last expression, the digit groups are intact and in the order of occurrence in
1979.

19 = 79 = 1501 is one of eleven composite integers between the primes 1499 and 1511.
Consequently, it is the corner element of the following third-order magic square com-

pgsed of composite elements and having a magic constant of 4512 = 2 « 47 » 48 =
27 ¢ 3« 47,

1501 1506 1505 19 - 79 2 +3+251 5743

1508 1504 1500 or 2% 13 - 29 2% - 47 22 « 3. 5%

1503 1502 1507 3% . 167 2 - 751 11+ 137
1979 = 1979 + 1 +V/9 - 7 + /9

= 1979(-1/9 + 7 - /9)
(continued)
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