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— CP(la 0,

) 1. 0, 0, _2/2
C_D(l’ la 0, 09 09 ] O)/Z /2
Thus, C,, (), «.., 2,,) = p*.
The_o/lem 9: W'henxl=j+l, x2=j’ x3=xu=.-. =;L‘p+1—J+1, ;Cp+2"‘ =I2P=J’

one has Czp(xl, ey xzp)= (25 + l)pz.
Proog: Cop(xys «evs Typ) = p?(2pj + p)/p = (25 + 1)p*, by using Lemma 5 and Theorem 1.

Theorem 10: V,, = Hm:p}m} U {m:p? [ m}] N [{m:2fm} U {m:4 | m}].

Proo4: By Theorems 6 and 7, no other values are possible. The only possible values are the
integers not divisible by 2 or p [by using A(2p, r, J) with gecd(2p, r) = 1], the muitiples
of &4 that are not divisible by p (by using Theorem 8), the multiples of p? that are mot
divisible by 2 (by using Theorem 9), and the multiples of 4p2? (by using Thecrem 3). Thus,
V,, consists of the integers m satisfying either p/m or p? | m and also satisfying either

2)mor 4| m.
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POWERS OF MATRICES AND RECURRENCE RELATIONS

WILLIAM H. CORNISH
Flinders University, Bedford Park, South Australia 5042

0. INTRODUCTION

This article arose out of the desire to demonstrate an interesting and perhaps initially
surprising application of the theory of matrices to final year high school students. Thus,
we consider a matrix-theoretic approach to firstly the solution of two simultaneous first-
order recurrence relations and secondly to the solution of a single second-order recurrence
relation, together with the proofs of a few identities.

It is well known that the solution of an mth order linear homogeneous recurrence rela-
tion can be found by means of the theory of matrices. Indeed, Rosenbaum [4] gave an approach
which is based on the Jordan normal form; the reader should also see the recent article [5]
of Ryavec. The technique used in Section 1 of this paper is based upon the Cayley-Hamilton
theorem for 2 x 2 matrices and is particularly elementary. A novel feature of Section 2 is
the use of 2 x 2 matrices to obtain generalizations of a few well-known identities which
interrelate the Fibonacci and Lucas numbers.

1. POWERS OF 2 x 2 MATRICES

a . . . .
Let A = 11 12| be a 2 x 2 matrix whose entries are real, or even complex, numbers.

The characteristic polynomial of A is

A=ay Qi )
det (A - 4) = _ - =A% - (a;, +a,,) + (a,,a,, - a;,a,,)-
a3 Sy
It can be verified by direct computation that
2 ~ - =
A (a11 + azz)’4 + (all“za “12a21)I 0.

This is a special case of the famous Cayley-Hamilton theorem which says that if

[
—
~I



Az1 Qg +ee dgp
A = E E 5 E is an m x m matrix (m > 1)
Am1  Am, Amm
and ¢(\) = det(A\I - 4) =" + ¢, ,\""' 4+ +++ + ;A + ¢,, then c(4) = 0 in the sense that
A" + cm_lAm‘l + .- + A+ cOI = 0. Here, ¢,_, = —(a11 +ta,, + o0+ Qnm) and e, = 1"

det A, as is consistent with the above case when m = 2.
Let U; and U, be the roots of the characteristic equation
AP = a1y + app) + @118y, = G15G5;) = 0.
Hence, U; + U = a3 + dp, and iU, = Q@y1d;, = Ay,4d,7. Thus,
(4= u D@ =) = 4% = (0 + WA+ wu,I =0= (G- yp,DU - uI

by the Cayley-Hamilton theorem; we will use these relations in the proofs of equations 1.2
and 1.7 below.

Case 1: u1 # u2.

Firstly, let us assume that the roots Y;, Y, of the characteristic equation are distinct.
Then, we may meaningfully introduce the matrices

1 1
E, =———( - u,I), =—" (4 -
1 ul - IJZ ( 1’12 ) EZ UZ - ’ul (A ulI) 4

which have the following properties:

(1.1) E, +E, =1.
The proof is a direct computation:
(1.2) EE, =0 =E,E,;
2 _ 2 -
(1.3) E{ =E, and E, = E,.
Proog: By (1.1) and (1.2), E, =E, I =E, (E, +E,) = E} + E\E, = E2 + 0 = E2. Similarly,
E: =E,.
(1.4) A =wE +Wk,.
By (1.2), E, and E, commute, hence (1.4) and the "binomial theorem" yield
\n o . mgon n\ n-1 -1 npon
G,y + 0,E)" = 1B + ()Wl Bl 38, + o 4 10E] forn 2 1,

and so
n o _ n n
A" = wE, + uE, for n > 1.

To take into account the case of n = 0 and the possibility that one of u, and y, is zero,

we adopt the definitions
A% =T and 0° = 1;

the latter definition is not so common, yet it will be useful in all that follows. Thus,
these definitions and (1.1) allow us to assert that

no_ . np n '
A" = WE, + WE, form >0
and then substituting for £, and E,, we obtain

ay, (Ul = ) + (uyuy - wul) ay, Wl - uy)

n

n

S
|v
=

(1.5) A —_—
ul - uz n n n n n n
ayy (uy = u,) Ay, (My = W) + (UyHy = UyHy)
CMQ_ 2: u1=u2=u.
Secondly, we assume that the characteristic equation has a repeated root y =y, = U,.
Let # = A - uI. Then we have the following properties:
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(1.6) A =ul + H;
(1.7) B* = 0.
Proof: H? = (4 - uD? = (4 - u, (@A - u,D) = 0.
Because W/ and H commute, the '"binomial theorem," (1.6) and (1.7) give
(1.8) AT = "I + ", o> L.
Substituting for # in terms of 4 we obtain
na,, - W +u na,,

na,, n(a,, - W +u

(1.9) A" = pttl , n> 1.

We now consider the simultaneous first-order linear recurrence relations

(1.10) Yns1 = G11Y, T a1,3,
Zy4y T Ap1Y, T aG3,3,

which hold for n > 0, and wherein the coefficients a;; are independent of n.

In terms of matrices, (1.10) can be expressed in the form

3
Y, Ynex (all P ryn-l Yn
(1.11) N = , n>1.
2y “n+1 a1 aZZJ 3n.1 2y
Hence,
\n A
Y, yn+l] Q11 G Yo Ui
(1.12) . = , n>0,
2y zn+1J la21 Q2| [B0 %1
or, more briefly,
(1.13) Y, =4A"Y,, nx20,
where
Yo Yuu Q11 Gy
Y, = . forn > 0 and 4 =
z, 5,4 ay, Q32

Applying (1.5) and (1.9) to yield expressions for 4" and then equating the elements in
the first row and column of left-hand and right-hand sides of (1.13) gives

(1.14) Theonem: Let W, and p, be the roots of the characteristic equation of the matrix

(all a2
A =
La21 PP
and consider the recurrence relations
yn+1 = CZllyn + alzz"
Boyy = Q,0Y, *a,,5,, n20.

If p, and u, are distinct, then for any n > 0,

_ (ay,y, + a;,5,) (up = W) + g (g = U

T TN

. - ro_ n no_ n
. __(a21yo +tay,z) (W) - ) oz (U = WH)
" H1 T Hp )
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If u, and Y, are both equal to u, then for any n > 1,

vy, = W (n(ay 1y, + ay,2, = W,) + Hy,)

2

REEEE KRR

n-1
n = W (nla,,y, +a,,3, - M2 o) + UE).

We now consider the second-order linear recurrence relation

(1.15) Uppnp = AUy, + Duy,

which holds for n > 0, and wherein a and b are independent of 7.
Of course, (1.15) can be regarded as a special case of (1.10) if we set y, = u, and

z, = Uy,,, for all n > 0, a,, = 0,,a12 =1, a,;, = b, and a,, = a. Then (1.13) gives
(1.16) U, = B"Uy, n >0,
where
Uy Upsr 0 1
U, = for n > 0 and B = .
Upyl Ups2 b a

Moreover, Theorem 1 specializes to yield the following important and well-known result.

(1.17) Conoﬂkang: Let Y, and Y, be the roots of the characteristic equation of the matrix

0 1
B =
b a B
and consider the recurrence relation
Uppo =au, ., + bu,, n>0.

If u;, and Y, are distinct, then for any n > 0,

n _ . n n _ n
) u (W = M) +ou Wy = Wl
" Hp = H
If Y, and U, are both equal to W, then for any n > 1,
Uy, = Wy - Uwp) + uHp).

We close this section with an example which occurs as Exercise 3-9 in [3, p. 92].
Beforehand, we note two consequences of (1.16) and (1.17) for the special case of the Fibo-
nacci numbers, which are defined by the recurrence f,,, = f,,, + f,, for n > 0, where f, =0
and f; = 1. Then (1.16) shows that

Uu

fn fn+l 0 1 n+1
fn+1 fn+2 1 1
and (1.17) gives Binet's formula
n n
Hy = W2 1+ /5 1 -5 1
fn —'—/g—, where u; -——-Z——and Uz——i—— ——]:1:.

Define two sequences {y,}, {3,} in terms of binomial coefficients by

n-1
n+ k
y = ( , ) when n > 1, and y, = 0,
Nfn + k
2, =Z< 2k ) when n > 1, and z, = 1.
k=0

Using Pascal's relation (Z) = (n i 1) + (n ; 1), it readily follows that

yn+1 = yn + Zn

= >
nel = Ypyq T 2, for n 2 0.
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Whence we obtain the special case

Yney =Y, T 23,, 20, y, =0

N
"
—

2,1 7 Y, + 2z

of (1.10). Here
11 £ f, {o 1)?

12 f s (1 1
in terms of the Fibonacci numbers. Then (1.13) yields
Yy Ypi1 o [y, 'y, 0o 1)*"fo 1
Fr Fney 1 1J %o ZlJ 11 12
o 3 3
on—l f2n 0 1
= lr ~ for n > 1.
2n Jane1 |1 2
Hence, y = f2n’ 2, = f2n+1 for n > 0, and Binet's formula provides closed expressions for
Y, and 2,.

2. SOME IDENTITIES

In this section we restrict ourselves to demonstrating a few identities concerning
sequences {u,} which satisfy (1.15) and which are suggested by (1.16) and (1.17). Basin and
Hoggatt [1] and Bicknell [2] have previously used matrix techniques to establish identities
satisfied by sequences which are defined by specializations of (1.15) and we follow their
techniques. It is worth noting that in [6] Waddill used different matrix techniques to obtain
identities.

(2.1) Proposition: Let {u,} be a sequence satisfying the recursion formula u,, , = au,,, +
bu, for n > 0. Then, for n > 1,

n
n-1, _ 2 = n n-ryr
(wou, -~ uj) and u,, E ( a” "b u,.

2
U, U - ul = (-b) »
r=0

n-1"n+1 ”

Paooﬁ: Taking determinants in (1.16) gives det U, = (det B)"det Uys ..,

) 2 — (_nYh _ .2
Uy p = Unyy = ( b)(uou2 ul) for u > 0.

Replacing 7 by n - 1, we get the first identity of (2.1).
The Cayley-Hamilton theorem implies that B? = aB + bI and so (1.16) gives

i (Z)a”b” '”B”)UO

r=0

U, = Bz”Uo = (aB + bI)"U0 =<

2n

and the second identity follows.
When b = 1, i.e., the sequence {u,} is given by u,+; = Qun+1 + u,, another type of

- 0 1

identity is easily derived from (1.16). For then B = and the set of matrices which
(o 1 \z oy ( 1 «a :

commute with | is : x,y arbitrary .. In particular, U  commutes with B
[1 a Zy ay+x \

and so
_ om n - pm+n;2
U,U, = B UOB U, =B Uo = Um+nU0.
Hence, we obtain

(2.2) Proposition: Let {u,} be a sequence satisfying the recursion formula u,,, = au,,, + 4,
for n > 0. Then, for any m, n > 0,

UnUy t Up Uiy = Upnly + Upingltys
and

7'{mun-r-l + Z/'m+1un+?. = um+nul + um+n+1u2'
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(2.3) Lemma: Let x and y be arbitrary and n 2 0. Then,

R _

T + Yy r - Z n x)’! + yn " - uﬂ]
2 2 2 2|

T-y x+y Tzt - yn ozt oyt
2 2 2 2

—_

Proof: Of course (2.3) can be proved by induction. However, we will give a proof which is ¢
in the spirit of this paper. Let

11 ‘ 1 -1
E =% and F =%
11 -1 1
Then, E? = E, F> = F, EF = 0 = FE, E+ F =1I. 1In addition,
Tty T -Y xt+ty -y
2 2 2 2
= xE + yF. Hence, - = 2"E + y"F,
gt 234 gt 23X

and the lemma follows.

(2.4) Pkogobiiion: Suppose the roots H,, M, of the characteristic equation of the matrix
0 1
B=
b a

are distinct. Let {p,} and {g,} be two sequences satisfying the recursion formula
= au,,, + bu, and such that p, =0, p, =1, q, =2, q, =a. Then, form, n2>0,

un+2
q? - (a* + 4b)p: = 4(-b)",
qmqn + (az + 4b)pmpn = 2qm+rx’
q,p, * 4,6, =28,,,"
u]r: B u; n n
Proog: Applying (1.17) and simplifying, we obtain p, = ﬁ:_:_iz and q, =y} + y; for any

n > 0. Hence, (2.3) yields

9, 4y - u,)p, L T
: 2 2
2. b = , n> 0.
2.3 K Hy = W, M+,
My = W,)p, q, 2 >

Since u,u, = -b and U, + W, = a, (U, - W,)? = (U, + w)? - 4uu, = a® + 4b. Using this
observation and taking determinants in (2.5), we obtain the first identity of (2.4).
Equation (2.5) implies that for m, n > 0,

qn (1, - )P, [ q, (1, - 1,)p, - T or My = Y.
(2.6) 2 .
(Ul - UZ)PM C],,, [(1—"1 - Uz)Pn qn (Ul - UZ)P,,,_H, q,,,_,_,z l

Equating the elements in the first row and column of the left and right of (2.6) and also
doing the same for the elements in the first row and second column gives, after simplifica-
tion, the remaining two identities of (2.4).
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CONVERGENCE PROPERTIES OF LINEAR RECURSION SEQUENCES

RALPH FECKE, M.S.
The Wyatt Company, Detroit, MI 48226

1. INTRODUCTION

The object of this paper is to examine convergence properties of linear recursion
sequences of complex numbers. Included are several theorems providing necessary and suffi-
cient conditions, in terms of solutions of an associated auxiliary equation, for various
cases and types of convergence.

The question of convergence of linear recursion sequences was raised by Singmaster in
Advanced Problem H-179 [6]. The articles of Raphael [4], Shannon [5], and Jarden [3] give
representations for linear recursion sequences of integers which are valid also for complex
number sequences (the restriction being for aesthetic reasons) and have been useful in pre-
paring this paper. These representations will be included without proof as the substance of
the next section.

Let a,, a,, ..., a, be complex numbers, with a, # 0. We define a linear recursion
sequence {QS(I%U} by

n
(1) QI =37 g2 for m > 1
i=1 ° Y
where U = [y, Ups voes Upl, @30V = u, for 1 <7 < n, and a(z) = " - a;a""! - a2 ...

- a,. We will refer to a(x) = 0 as the auxiliary equation. The absence of the row vector U
from the notation will imply that U = [0, O, ., 0, 1], representing the normalized sequence
we will be most concerned with in this paper. The order of the sequence {Q%*)¥} is #, and
hence the restriction that a, # 0 incures a unique definition of order.

2. REPRESENTATIONS

Some representations for linear recursion sequences will be helpful, and are presented
here.

Noticing that the recursion relation (1) has a form similar to that of scalar multiplica-
tion of n-tuples leads to a matrix approach, presented for instance in Raphael [4]. Explicitly,
we may write

la, a, ... oa,” 1] -Q,C,I,(I) ]
1 0 ...0 0 Q2
(2) 0 ... 0 s = for m > 0.
z)
0 ... 1 0 0 Q%)
L - - J - -~

Another approach by Raphael [4] relates linear recursion sequences to power series in
the following way:

(3 :E:QZ(I)xi =1/(1 - az - ax® - -+ - ax").
i=0
Let r;, ..., 1, be the n complex roots of a(x) (repeated according to their multipli-

city). Then, as Jarden [3, pp. 106-107] noted,
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