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36-tone tempered scale, so that every third member of the sequence is very nearly one of the
twelve tones of our present musical scale. For perfect correspondence, such that every third
tone is 100, 200, 300, etc. cents, the value of r should be 1.618261.

The usual method of constructing tempered scales is to use a ratio » which is the nth
root of 2 to obtain a scale of n equidistant tomes. /2 = 1.019440644, The ratio 1.618261
is a power of this, in fact the 25th power. It is interesting to note that 1.618... itself
is not a frequency ratio that corresponds to a tone of our 12-tone scale, for it gives 833
cents, far enough from 800 to sound sharp and give discords. Other attempts to relate the
Golden Ratio to musical pitch have overlooked this hard musical fact. The present discussion
may serve to reinstate the Divine Proportion into the Divine Harmony.
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EXPONENTIAL GENERATION OF BASIC LINEAR IDENTITIES*

RODNEY T. HANSEN
Montana State University, Bozeman, Montana

Generalizing results of Fibonacci and Lucas numbers has been an occupation of a large
number of mathematicians down through the years. Frequently, one approach taken is to first
prove a result involving the Fibonacci sequence {F }n=0 and the Lucas sequence {Ln}n.o and
then extend it to a result or results of special cases of the sequences {F%k+r} .o and
(Lnk+r}n-o, where k and r are fixed integers. In this paper attention is focused on deriving
identities related to these latter sequences. Such results, called linear because of the
subscripts, are surveyed in [1]. The exponential generating functions for these latter
sequences are now shown to be most productive in deriving basic linear identities that the
author believes to be new. In addition, alternate derivations of several known results will
be given to show the great usefulness of these generating functions in attacking a variety of
Fibonacci and Lucas problems.

Recalling the Maclaurin series expans1on for e®

X 2 — T
ex=1+—l—!—+2—- Z—-—
and hence
Ar _ (Ax)z
(1) efr = 1 + 1, i HZ::OAn',

for any constant A, we note that the exponential generating functions for the first men-
tioned sequences are

n ax _ Bx
2:5} ET.= e -—e”
n=0 n S B
and -
ZLn %T = %" + 7
. n=0
where o = l_if!i and B = i—%fﬁi.

The exponential generating functions of the sequences of interest in this paper are
found by use of (1) to be

n "x r B":c
_afe®® - Be
) Zo er oy TE
(3) ZLnk+r - = area": + Breskx
n=0 n
K k
n _ afe T _ Bre-Bx
(4) nz.:o( l) Fk+I‘nl - o - B

*This paper was presented at the Fifth Annual Spring Conference of The Fibonacci Association,
April 23, 1972.
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szl B

k
(5) Z( " L,,k,,,m are T 4 gr -t
n=0
k+1 k
=areu z Breuax
(6) nz-oa Fnk+rn| o - B v
|
k +1
areuﬁz - SreB" x
(7 ”Z-OB F,,“rn, - T
- n .
@ 20"y = et 4 e
9 ZB k*'"n' = are® & 4+ g7 B

Exponential generating functions are given a considerable workout in [2] in deriving many
Fibonacci and Lucas identities,

By convoluting any pair of the above series and then equating like coefficients, a
linear identity is found. To begin we convolute series (2) with itself.

2 k+r Z nk-n'nl Z Z( ),71(+"‘ F(n J)k+ri:‘

and =0 g=o
r akz r_B*z \2 ‘
<a € - : g e > - %[(azrezd‘x + BZreZB":c) _ Z(QB)re(“k+Bk)’]
— 1 1,.n)x"
=3 3[2”L,,k+2,, +2(-1)"" L,:‘]n—!.
ne=o
Hence
n
n _1[,n r+l,.n
(10) > (5) Bk Fon - pyar = 2 Lutsar + 26D

a=0

The convolutions of series (3) with itself and then series (2) with (3) yield the following
results:

n
n r.n
@ Z(J)LJk""L(" DHk+r = 2nLnk+2r + 2(-1) L,
j=0
™~ /n
a2 Z (j)F-'f" trln-ker= 2" Fuxaan -
i=0

Several additional summations which reduce to simple expressions are found following the
same procedure. Convolutions of (4) with (2), (4) with (3), (6) with (7), and (8) with (9),
respectively, yield a representative class of the identities easily derived from the given
generating functions.

" {

Z("l)"Fk-H'nl Z k+ri—- Z Z( >( -D'F Jk+rF(n-J)k+ri_!- -

n=0

are—a"z _ Bre-B"x ale = - BTe Bk B
o - B a - B -

and

%[(azr + Bzr) - (aﬁ)r(e(‘“y*‘s")z + e(“"-ﬁ"):)]
ff + corn e )
1
B

%LZ, + (- 1)1“'125"’25’,([( "+ 1] %

n=0

By equating like coefficients, we have

2 )
(13) Z(;)( S Fgan Bamgyier = 2(-17 15" for m > 0,
ico
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and
2n+1 2 +1

(14) Z( " )( D Fyvr Fom—ga1piar = 0s fOT 7 2 0.
J=0

Now considering series (4) with (3), the identities

2n
(15) }: <d>( “1)7Fy 0 Dgn- jyxan = 05 for n > 0,
Jj=0
and
T (241
. n
(16) Zo< J >( D B n Lgnoganyar = 2CDTTISTERTY, for m 2 0,
=

are deduced.
Similarly, we find

n
1 (-7
a7 Z(g)a 8"" Jk+rF(n Ak+r = /_g{Fnk+2r + /5 [LZH + ("Lk_1)"]}
j=0
and
n
7\ iomd
(18) Z()(J.)aJB” Jij‘i-I‘L(n—j)k-Q-:p: Lnk+2r + (- l) [ "+1 (_Lk_l)n]-
i=

A direction of generalization of the given results as well as derivation of new results
is to find additional generating functions. Then aided by several lemmas that simplify the
exponents of e resulting from convolutions, many linear identities are found.

To generallze the given generating functions we begin with series (2). Replacing ak* by
akF and B¥ by B* ‘F, where m is a fixed nonzero integer, leads to

* ).'L'
ot ofF Y= - B BF,
OtreakF"'x _ BreBkF,‘x Z( n! nE=o( ) © n(ank+r _ Bnk+r) o
o - B a - B :E%f; o-B n!?
ne=
and hence
k k
9 ZF ot gr R
(19) nl'+v=7| - o - B

Each additional generating function given is similarly derived. (Note: Lettingm = 1, we
have F] = 1 and then are back to the original generating function.) Only three additional

generalized generating functions are listed.

¥,z r B[ x
-n ale® Tt - BTgH
(20) : ZL Fnk+rnl = a- B
- * v BAL
(21) Z Ln nk+“n' = gle® Ly 61'6:3 T
= xﬂ . k - -k
(22) D B Ly iy = @'et T 4 get

n=

The Binet definition of the numbers involved proves several useful lemmas.

1

Lemma 1: ok = oF, + F,_,, B* = BF, + F,_,, o = =(aly + L;_,), and B* = /_(st + L),

V5

for any integer k.

Lemma 2: o*E, = F,,; - 8"F,, B*F, = Fpp - o"Fy, &*L, = Lnys + 8"V5F, , and

B, = Lper - o"/5F, , for any integers k and m.

Substitution of these results into the given generating functions yields identities of
interest in themselves. For example, consider series (2) and (19). From Lemma 1, it follows
that

63



n
a oF, + F - Fo + F_ "
iF L= are(aF'+’*")z _ B,e(gp“.p;_l)z ) 2( k- 1) B nE-O(B k k- 1)
“~ nk+7 a-B a-B
- n
AT n-jx”
= E Z(j)&dfjw k-171°
n=0 j=0
which yields
n
= J n-g
(23) Fgsr = Z(J)F F.7+rFk 1t

j=0
This identity has been derived by distinct approaches in [3] and [4].

' ) - B" wak = Q"F
ZF Fnk+r - aTe® Fpx  _ BreB Fpx _ ere(F"" B"F)x Bre(p x -Q"F )z

n=0 a - B a - B

Lod n @
@ 3 Fnux = BFO" ST = 87 D By - 0TSy
n=0 i

_ n=0
a -8
L4 n n
= -1 n-J+r+1 n-g
r;) ‘72_;(,7)( ) Fm+kF Fm(n—,;)-r
and so
n _ S n-j4+r+1 n-g
(24) FnFpkar = Z%(d>( -1 Fm+ka Ftn-g)-nr
i=
The corresponding Lucas number results are
1 < /27 2
(25) Lomcar = 35 90 (4 )Y L
j=0
2n+1
1 2n+1\.,d, 2 1
(26) Liznsn)k+r = S Z( J )LkLkn 1J+ Fiyps and
j=0
n
27) e I (1 D e A !
J=0

An alternate approach to identities of similar form is given in [2].

Several basic identities given early in the paper are now generalized by use of gener-
ating functions (19) to (22). It is of much interest to compare the original results with
their generalized form. We now consider the convolution of series (19) with (20).

Jrn-j .’Z?" Qreakax - BfeBthx al"eﬂkme - B?eBkme
ZZ() Ln %k+r (n-d)k+rn! = a - B a-B

n=07j=0
_ = n Jk+r+1 7 n-j x"
_Zo 5[2 Fm+1 nk+2r+ <J>(-l) Fn;ij L(n-zj)kil’n_!'
Hence, §

n
J _ 1 Jk+r+1 3 n-J
(28) Z(J>F In g an F fm-k4r T 5':2 FryyDysr + Z( >( -1y EiLm “Lin- za)k]

=0

n

j=0

and so

n wedl ( l)gk+r on n
J - =
(29) z Enlm “\Ejx+r Fin- k+r T Lin -2k | = _S_Fm+1Lnk+2r .
= J 5
j=

Results of similar form may be derived by utilization of the other generating functions. For
example, from series (19) and (21), we obtain

n

Trn = _ Jk+r+l_ g . n-g
(30) 2}(J)F L JE:—;k+rL(n-j)k+r" 2 Fm+1 nk +2r + Z( )( -1) F L F(n 25) k
i=
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and

(31)

1.

n

n Jrn-g ik + _ annn
Z <j)FmLm [E‘;'k+rL(n-j)k+r + (-1)7 rf&n-Z.j)k] =2 Fm+1Fnk +2r ¢
i=0
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IDENTITIES OF A GENERALIZED FIBONACCI SEQUENCE

H. V. KRISHNA
Manipal Institute of Technology, Manipal, South India

The purpose of this note is to give identities of third power and above of the general-

ized Fibonacci sequence with nth term H, satisfying the recurrence relation H, = pF, + gF,_,
and H, = g where F, denotes the nth classical Fibonacci number.

¢9)
(2)
(3)

We refer to the following identities of A. F. Horadam [1]:
HoBlayy = Hpyp = (FD7e
ByonBoox = BnHnynex = (F1)"eF, F,
By = By ¥ BHpnogoy

m

and also use

(4)

. s _ 2
Heyr By o Bia o Bxys = Hys = €

where e = p? - pg - ¢°.

Identity 1: HY - 2H3,\H, - H2, H: + 2H3H,,, + Hi,) = e°.

2

Identity 2: Hpuy - bHp,3 - 19Hs,, - 4Hj.y + Hy = -6,

4

Identity 3: Hy, s = 5H,, + 15Hy, 4 - 15H, , - 5Hy,, + H,.

n
Identity 4: 259 Hy = B , = 3Hy,, - 22Hn,y - Hy + 6°(n - 1) + 4
k=0

where 4 = 15p* - 32p’q - 12p2g® + 16pg® + 34q".

n
Tdentity 5: A. 189 (-1)VHY = (-1)"(HY,, - 6H4,, - 9HY,, + 24H%,, - H);
k=1

(-1)" (-Hy,, + SHi,, + 14Hy, | - Hy - 3e?).

n
k 4
B. 9?_:1(—1) B

Identity 6: 25 By, B, oH, Hyes = 26H8,, + 22H4,, + 384,y - HY - C,

where C = 19¢%n + (66p" + 70p3q + 131p%q2 + 146pq3 + 47g%).
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