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In both logic and mathematics the comma is used to represent the ordered and unordered
concepts of and. This equivocation in the use of the comma is bad notation which can lead
to serious problems. It is also unwise to indicate ordering by changing brackets to paren-
theses. To avoid these problems, we will denote the unordered and by the common plus sign +,
and the ordered and by the symbol +, to be called proto-plus. + will be employed as ordinary
addition when it is used with real and complex numbers. Obviously this creates a problem
regarding the use of the unordered and in set theory. For example, instead of the set
{2, 3, 4}, we would be obliged to write {2 + 3 + 4}, which would indicate adding 2, 3, and 4,
yielding 9, which was not the original intention. This problem is resolved by building an
enlightening new set theory out of the properties of its own elements. The first step in
this direction is to introduce ordered multiplication, a noncommutative operation denoted by
the symbol o. This operation will enable us to differentiate between concepts such as '"two"
and "a two" (one of two, or a pair, denoted by 1 o 2). 2 o 3 would then be understood as
"two triples.'" The axioms for + and + will be given later. Next we introduce the concept
of "any counting number,"” denoted by w, where w + w = w. A set containing pencils (p) and
erasers (e) would not be written as {p, e}, but as w o p + w o e. Naturally,
wo2+wo3+4+w e 4 does not equal w o 9. Adding two operations of "choice" (C) and "anti-
choice'" (¢) completes the list of operations necessary for the construction of this new set
theory. One of the interesting consequences of this approach is that the operations of +
(ordinarily denoted by the comma between elements) and union (ordinarily denoted by U) are
one and the same. Many other interesting insights arise from this approach.

The ordered collection "g and then b and then e¢" will be written as g + b + ¢, and we
will introduce a sigma type notation, parallel to the common use of I, for iterated use of
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+, to be denoted by 0. O f(n) will then denote f(1) + F£(2) + f(3) + +++ + f(n), and will
iml

be called a proto-sum. If "g" and "b" are real numbers, 'a + b" will be called a proto-
number (as well as a proto-swm). Obviously

(La) a+b+#tb+a
We define proto-minus - by
(1b) a+ (-b) =a-D>

Note that 1 - 1 is not zero, but differs from it only by the extra-numerical information of
ordering. We shall call such a term a proto-null, and, since it is not zero, we can use it
as a divisor. )

We will now present the axioms for + and the proto-numbers. Given a collection of real
numbers R, with elements "g'" and "b'", and a collection of proto-numbers P, with elements

"p'", "g", "»", and "s;" (¢ any counting number), and three operations +, +, and ¢ in R and P,
then

(2a) (Ya) (Yb) a+bekP

(2b) (wp) (vVq) p+tqeP

(2¢) (vp) (vq) p+qeP

(2d) (vp) (vq) pe-qeP

(2e) (vp) (vq) p+qg=qg+p

(2£) (vp) (Vg # P) p+tqg#tqg+p

(2g) (vp) (Vq) prgq=qg-°r

(2h) (vp) (¥q) (Vr) pt(@+r)=(p+qg) +r

(21) (vp) (vg) (¥r) p+(@+r)=(Q@+q) +r=p+qg+r*
(23) (vp) (¥q) (¥r) pr(@-r)=({®--q) r

(2k) (vp) (30) p+t0=0+p=p

(21) (vp) (30) p+0=p

(2m) (vp # 0) O+p#p

(2n) wp)(3 - p) -p+p=p+ (-p) =0

(20) (vp) (vq) (¥r) prlg+r)y=peg+p-r

(2p) (vp) (¥s:) p - CJ’1 (8;) = ~01 (o * &)

*+ has precedence of operation over +.
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We would like to add the axiom
(2¢) Wp # 0)(3p'1) p'l cp=p - p-l =1

but we need extra concepts to deal with the multiplicative inverses of O + 1 and 1 - 1.

The case of O + 1 can be handled by introducing the ordered operation retro-plus,
denoted by 4, which has an axiomatic system which is the exact mirror image of the axiomatic
system developed for +, with the condition that

(3a) 0+ (1L40) =1

Then we can deal with retro-numbers which are ordered from right to left instead of from
left to right. It follows that
1

and we find that 0 4+ 1 is the multiplicative inverse of 0 + 1.

Before discussing the multiplicative inverse of 1 - 1, we must have more tools to work
with. By the above axioms we can show that

n n n
(3C) ag (ai + bi) = O'ai + O b.,:
i=1 i=1 i=1
n n n
(3d) g <ai + bi) = 0O a; + O bi
i=1 i=1 i=1
m z Z m
(3e) o .q, = g .a;
n
n m m .
(3f) O O ia;=0 E(i-a'+1a.y' e, nai), where "2, =1, 0< i <m*
J=1 <=1 1=1 j;l =0, 02i>n
m n _ m m n
(3g) (gl ai>- (J‘_Tl b¢> =0 (ai-jn * by e gt ZJ‘)
Jg=1
(3h) (a + b)!" =Z‘(;’1 r! ar-i+lb‘l:-1
G le-T+Dz -

The binomial expansion is an operation between ordered sums and equation (3h) is its
only legitimate expression. In this treatise we will only consider sums generated by the
binomial expansion, giving us the basis for a theory of rational proto-numbers.

Another common operation between ordered sums is long division, and it must be con-
sidered a proto-algorithm. Henceforth we shall refer to it as proto-division. It turns out
to be the operational inverse of the proto-multiplication given in equation (3g). As an
example of equation (3g),

(31) (L +2+3) + (4+5+6)
=14+ (Qe5+24)+(L+6+2c5+3c4)+(2¢+6+3+5 +3-+6
4+ 13 + 28 + 27 + 18

The following demonstrates that proto-~division is the inverse of this operation:

4+ 5+ 6
(33) 1+2+34+13+28+27 +18

‘ T4+ 8+12+ 0+ 0

5+ 16 + 27 + 18

5+10+ 15+ 0

6 + 12 + 18

6 + 12 + 18

. 0O+ O

Given the proto-numbers p, g (# 0), and r, we define
(4a) r=p:q==E
q
p,r_p*s+qg-r

(4b) g+ 3 s

*The coefficients "2, can be more generally developed, but space does not permit further
discussion. 23



py,r_prs*qg-r
(4c) R s
(4d) p,r_p-r
q & q-*s
(4e) p_r_p-s-q-r
q s q-s
(4f) B‘r—= ¢« 8 - « P
q s q * s
p.r_p-s
(48) g s q-r

We will adhere to the additive index law for real powers of proto-numbers where, for
myn € R,

(4h) pn=|p-papn. cee op‘
(41) pm . pn = pm+ﬂ
(43) p" +pt = E: = pm-n
p
(4k) p’ =1

Probably all ordered summation processes are related to this axiomatic system. For
example, we cannot consider any specific infinite sum without ordering its terms. Thus,
all infinite series as commonly used are actually infinite proto-sums, Consider the
following example:

1 =~ o1
(5a) T -le
<

which should be written as

1 &ai—l

(Sb) 1=+a i=1

”

In equation (5a), 1—%—2 is the total of the infinite sum and is a real number if "g@" is real.

This sort of expression fails to differentiate between a sum and its numerical total. In the

T 1 P is not a real number, but a proto-number.
To find a numerical total for the infinite proto-sum in equation (5b), we must devise a means
of relating terms such as T i 2 and 1 i p This is not as simple as it appears, and requires
a study of both the null and infinite proto-numbers.

To define infinite proto-numbers, we must consider the multiplicative inverse of the
simplest proto-null 1 = 1. Let us begin by denoting the multiplicative inverse of 1 = 1 by

ﬁ,* which we will call proto-#. Then
1

case of equation (5b), we must remember that

(6a) m=7-5=0Q-D"'

(60) R R e s e

Similarly, we can show that

(6c) " -~ "= m" !

We can also prove that, as a consequence of the axiom in equation (2q),
(6d) n=1+1+1+"

*¥ is the letter for yee in the Russian alphabet.
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We could have anticipated this result by dividing out 1 i 1 by proto-division, and it can be

shown that such a division in a proto-system leaves no remainder. Similarly, there is no

1
1-2 to get the result in equation (5b).
Because of this, it is easily seen that the proto-binomial expansion in equation (3h) is true
for all real values of a, b, and r, in a proto-system. Surprising as this result may be, we

must bear in mind that an equation such as

remainder in a proto-system when we divide out

1 _ = -1
(6e) T3 = g2

i=1

is not a contradiction since ——};72 # -1,

1 -
We are familiar with sequences having an open end; i.e., an infinite number of terms
such as f(1) + f(2) + «++- + f(n) + --- . Sequences having unique first and last terms, with

an infinite number of terms in between, are less familiar, but have been employed, for exam-
ple, by Cantor and others. We will say that sums and sequences of this sort have open

middles.
Using an infinite proto-sum with an open middle, we define the intrafinite integer " by

"

(6£) l.".=t-c."1(l)='1+1+1“+---+1‘
Then we introduce a prineciple of substitution for M such that, if
(68) gtn) = @ £(2)
then
(6h) gl = 1,(l_;'lf'(i)

For f(2) = 7 this becomes
(61) g(H)=ioﬁ"i=l+2+3+4+---+n

-1

For every term in this proto-sum, up to and including M, we can associate its value with its
rank. Obviously we are not dealing with the class of natural numbers, since the natural
numbers are all finite in size, despite the fact that there are an infinite number of them.
We will call our collection the amorphous intrafinite numbers.

Henceforth we will abbreviate z; by O and will always use it in place of O , which
i=1 i i=1
is actually meaningless due to the ambiguity of «. We could, in a sense, interpret ¥ as
being the number of all counting numbers.

Now we must construct a system of numeration of radix (base) M. Note that a system of
numeration is also a form of proto-math. In a system of numeration of radix I', we proto-add
"ones" T times, and then proto-add another T "ones,'" etc. The empty frame, with T positions
to be filled by "ones'" in such a system of numeration, will be called a Collect® of radix T.

n
If n < T, then O (1) will be called a proto-digit, to be written as n; i.e.,

i=1
n
(63) . o1 =n n<T
i=1
By choosing a system of numeration of radix WU for a general approach, all infinite sums
will be considered as Collects of radix ¥, as well as all finite sums; i.e.,

-n

(6k) O F(G) = F(1) + F(2) 4 +- + F() + 0+ 0+ «ov 40
i=1

1

where the right-hand proto-sum will have ¥ terms.

*Pronounced kélekt.
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Notationwise, we will use the following convention:

(61) g’f(i) FQ@) + fQ2) + f3) + «-+ + f(W)

F@) + fn) + £F3) + «+v # f(n) + -+

employing either the open end or open middle notion as desired, considering them as equiva-

lent.
By equations (3g) and (6d), we can show that

(6m) ur = 1 =?-[ (r+7 - 2)! ]

- 1 - 17 (r - 1) (2 - 1)!
and
_ » L ( 1)'L'+l.,,|
(6n) = (1-1) 0'[(1, YA 1)']

In order to obtain totals for infinite sums, we must relate proto-sums to their corre-
sponding unordered sums. To do so, we must delete all information concerning ordering,
introducing a certain degree of indeterminacy, so one can no longer differentiate between
+ and +. To accomplish this, note that

——n—
(60) 0+ - +0+a=qg-+ (0+1)" =al-u"H"

Then, given (r a; M , we see, by equation (6n) that
i=1
m

m
(6p) o an’= Zaig” + B

=1 i=1

where B is a linear, unordered sum of powers of M, all less than p. If we drop all terms
of lower potency than H there is no distinction between + and + (this reasoning also holds
for m = n, provided the proto -total of (ﬂa Hp contains no term of potency greater than Hp)

Setting (741 nf'equal to :Z:a H , we have introduced a certain indeterminacy concerning all
i=1
additive terms of potency less than !p. Such a relation will be called a reduced equatzon,

or an isonomic relation, which we will denote by a 'p" under the equality sign, whence

m
(6q) o a;u’ = Eai»_x_p
i=1
i=1
m

to be read, ' O'a WP is isonomic to Eai wP, in a reduced equation of order p."
i=1 =1
Now, to relate M” and WU”, we must take into account the missing remainders which are
peculiar to proto-math. The following example demonstrates the problem:
Applying the prineciple of substitution of U to

n

, _n(n+1)
(61) Z-b =22l
=1
we have
< v oon
(6s) Yi-&+1

i=1
This is the unordered sum that corresponds to the proto-sum @< in equation (6i), which has

1
as a proto-total ﬂz. In a reduced equation of order 2, n2/2 + n/2 becomes n?/2 and we are
forced to conclude that

2
(6t) Zos oyt
More generally, we find that
(6u) W= riyr

26
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a result that can be derived from consideration of equation (61) and its unordered counter-
part. The same result can also be derived from consideration of the missing remainders in
multiplication of powers of ¥, but present space does not permit this. We would expect to
find a relation between ¥~ and W7 corresponding to equation (6u), but this has not been
accomplished yet. So we will take equation (6u) as our definition for ¥, for r > 0.

Now we must investigate the type of proto-sum generated by dividing our 1/1 - aq by
proto-division, where Ial > 1. As in the case of equation (6e), we are faced, in reduced
equations, with the enigma of absolutely divergent sums having finite totals. This result
demonstrates that numbers of such magnitude as 2" cannot be dealt with realistically using
summation, but necessitate the use of infinite products. That would be beyond the scope
of this present work, but note in passing that it can be accomplished through the use of o,
the operation of ordered multiplication, based upon the following additional axioms for the
collection P of the proto-numbers:

(7a) (vp) (Vgq) peqgeP

(7b) (Vp)(Vq # p) P oeg=qgop .
(7¢c) (Vp)(Vq)(VI’) p (q or) = (p . q) or=pesgor
(7d) (vp) 30) pe0=00ep=0

(7e) (vp) (Vg) (Vr) (p+q) er=por+q or

(7€) (vp) (vg) (¥r) (p+q) or=poeor+qger

(7g) (vp) (vg) (¥r) pol(g+r)y#poqg+por

(7h) (vp) (vg) (¥r) pol(g+r)#pogqg+poer

(71) Wp) pel=p#1loep

(73) (Wa € R)(Wb € R) aobeP

(7k) aob=a-p"*

These axioms enable us to include proto-numbers as exponents.

It is also easily seen that

(71) Clb o af = ab+c

(7m) 1o¢g=q0*l

(7n) 2 o o d=al

(70) a o (b ° c) = (a o B) o (1 o C)

(7p) (@ ok) o(ced) =1lae B« c)]eo (1 od)
—n —

(7q) aZ o e 0o gl =gl

(7r) ]_gE (a o b) = lg,a + lgeb

In the case of proto-sums generated by proto-division such that

1 i-1
——— = N >
Tz -9 la] > 1
the results obtained by employing reduced equations are all self-consistent within the
system. Take the case of equation (6e): this reduces to

n
(8a) Y2ttt s
=1

(We treat this case as a reduced equation of order 0, since all such absolutely divergent

sums act as though they were convergent; i.e., having zero-order totals.) This is why we

say, as in equation (8a), that this properly divergent sum is Zsonomic to -1 (not equal to -1).
v

This means that, in the proto-system, :E:(Z"l) has the same properties, or obeys the same
laws, as -1. i=1

As an example of this consistency within the proto-system, consider the following:
Dividing a convergent sum by an absolutely divergent sum should give us a reduced total of
zero, as in

*« has precedence of operation over o.
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-1
T L ilogerh <1 -lan < 1. Y2 ) - 11
g%l) 2 k 2 2k 2 2\2 -~ 1 2 -1

which obviously reduces to zero, as anticipated.
V.

—

(8b)

1f, instead, we claim :E:Zi'l to have the properties of -1, then proto-dividing q(z'i)
1
. 1:-1
by G(ZJ'l) should produce a result that reduces to -1, since the first sum converges to 1.
Indeed, by proto-division,

o)

£ 7 _ 1. 3 \_1. 3400k _£-2< 1 )_1-2

(8c) iy | 2 ?(2“1) 727292 =55 \717)" 71
i

which reduces to -1, as anticipated.
All absolutely divergent sums of the type

=ga’-l, |a| > 1

(Sd) l-=aqa 1

which behave as though they were convergent in reduced equations, will be called co-vergent.
The Fibonacci sum Of(Z) is generated by proto-division thusly:
1

= () = 1
(9a) F = ?7(1) -
Since
(9b) 1—1-1=<1.._1+2/5_),<1_;1-2/§>
then
3 1
(9¢) ar@@) =

<1_1+2/'5“>‘ <l_‘1—2/§)

whence the proto-Fibonacci sum is the product of two proto-sums:
i-1
(9d) e =Q-M
1 i 2

and

i-1
=) ]

e, is a co-vergent proto-sum, while ¢, is an alternating divergent proto-sum. In reduced
equations of order zero, both sums are isonomic to finite numbers:

2
(9f) e, = ——
YY1+ s
and
(9g) . c:—._z___
21 -/

As one could anticipate, the product of these two '"totals'" is -1, the same as the reduced
"total" of the Fibonacci proto-sum.

Let us form a new proto-sum by proto-adding every other term of the Fibonacci sum,
beginning with the first term, to be denoted by F,. Then let us form a second one by proto-
adding every other term, beginning with the second term, to be denoted by F,. Then

(9h) F,=0f(7 - 1)
and
(91) F, =g’f'(2i)

It is easily seen, by proto-division, that

1-1

(93) S Sl e

and

28
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1
(9k) Fo=17331
whence
(91) F, =W- F1

In reduced equations of zero order, F, will be isonomic to O and F, will be isonomic to -1.

For notational simplicity, let us introduce @; defined by

(9m) 2; = 1, for an odd integer
= 0, for an even integer®

Next, let us define F| and F] by

(9n) Fl = g[aif(i)]
and
(90) Fj =0le,f(i + 1))

Obviously, F{ is the proto-sum F, with zeros inserted between all of its terms. The same is

true for F] and F,. It follows that
©“p) Fl #F} =F

In zero-order reduced equations, the sum of the "totals" of F] and FJ] should be -1, the
"total" of F. In substantiation of this, it is easily seen, by proto-division, that

1+0-1
! =
(%) =13 0=-3%0+1
and
(91) F! = L
2 1+0->3+0+1
Note that
(9s) 1+0-1=(1+1)@A-1)
and
(9t) 1+0-3+0+1=((1-1-1)1+1-1)
The above equations substantiate equation (9p), since
1+0-=1 1 (1+0-1) +1
4 I = =
(9u) Rt " T3 0-3%0-1"T+0-3+0-1 1+0-3+0%+1

1+1.1 _ 1 ~
"A-i-Da+i-D 1-1-1-F [by (92)].

If we define the alternating Fibonacci proto-sum F-by

(9v) F=g[-D )] = 71—

it follows, by equations (9q) and (9r), that

(9w) Fl=@1Q1+0-~1F}

whence, by equations (9a2), (9r), (9s), (9t), (9v), and (9w),
(9x) Fl=@Q+1)(1-=1) +F-«F
Similarly,

9y) F} = F .« F.

Equation (9a) reduces to

(92z) F=-1

and equation (iv) reduces to

(10a) f-§ 1.

Then, from equations (9x) and (9z) and (10a), we see that
(10b) Fl =0.

*The concept of 2 can be generalized for some complex series.
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Similarly,

(10c) Fé = -1

whence

(104) Fl +F] = Fl +F] = -1.

Comparing (9z) and (10d), we find another substantiation of (9p).

These operations on the Fibonacci proto-sum show how proto-math opens new vistas of
research on infinite sums. It gives us the beginning of a nonconvergency approach to the
summation of infinite series, and some of the classical methods of summing divergent series
will be special cases of proto-math, one example of which is Cesaro's method. This is true
since the sum of the partial sums of an infinite series is simply the operation of multiply-
ing that proto-series by

(11a) Y= o).

In proto-math, the laws for regrouping terms in divergent series are easily found, and
they vary according to the orders of the reduced equations. Given proto-sums, whose "totals"
are linear sums of positive powers of M, we can find these totals by inspection of the nth
terms. We can develop the differential calculus using 1 - 1 instead of infinitesimals,
freeing us from the need for limiting processes. Indeed, it may even be possible to develop
most of our present-day mathematics without recourse to limiting processes.

There seems to be a vague similarity between the approaches of proto-math and Non-Stand-
ard Analysis, but instead of using hyperreal numbers and infinitesimals (which lie on the
real line, we use proto-numbers and proto-nulls (which do not lie on the treal line). There
is no Standard part for the infinite numbers in Non-Standard Analysis, but with our isonomic
relations we seem to have achieved a generalization which enables us to enter the infinite
range and deal with it in a realistic fashion.

There also seems to be a vague similarity to Cantor's work on the infinite, but there
are many important differences. For example, in a proto-system of numeration of radix
(base) ¥, the number of digits is not the same as the number of rational numbers constructed
from these digits, in distinct contrast to the Cantorial system, where the number of natural
numbers cannot be distinguished from the number of rational numbers. Also, in the proto-
system, rearranging the terms in a divergent sum gives us the same 'total" as in the original
sum. The need for order types and ordinal numbers does not arise.

Eventually, expressions such as

(11b) 192(0) = o
and
(11c) T'(0) = =

can surely be rendered obsolete, and expressions such as

Cl4ieledala...

(11d) PR =¥

can be given a rigorous foundation.

Since we have not basically employed set theory in the development of our infinite con-
cepts, and this is a non-Boolean approach, we should expect major departure from the classi-
cal approach.

Granted that this work is still in an embryonic form, there is much yet to be done in
firming up its foundations, but the promise in its unusual results and self- con51stency make
it worthy of further investigation.

Wb

30

R N



